Itzhak Bars

Itzhak Bars

Department of Physics and Astronomy
University of Southern California
Los Angeles, CA 90089-0484

Office: Seaver Science Center, SSC 216B

Tel.: (213) 740-0047,   Fax: (213) 740-6653

e-mail: bars@usc.edu

 

Bio sketch

Publications

2T-physics in the news

Online Lectures on 2T-physics

Book on 2T-physics


Research Interests

My current interests include Cosmology and Black Holes , Two-Time Physics (2T-Physics) and String Field Theory (SFT). My long-term goal is the construction of the unified theory at the fundamental level.

My research is driven by some of the current questions in Cosmology, the Standard Model of elementary particles, and unification of forces including quantum gravity in the framework of string theory or M-theory. The mysteries that are hoped to be resolved include the physics of the very early universe and how it determined the gauge symmetries (forces) and the families of quarks and leptons (matter) that we observe today. Once the fundamental theory is constructed it is likely that it will suggest the best approach to answer our current mysteries, including dark matter, dark energy and a host of issues related to masses and interactions of quarks, leptons and force particles.

All the physics we know with certainty today at microscopic or macroscopic distance scales is embodied in principle in the fundamental laws described by the Standard Model of Particles and Forces, and in General Relativity.  In 2006 I discovered the  2T Standard Model and in 2008 2T-Gravity, both in 4-space and 2-time dimensions.  Supersymmetric 2T-field theory in 4+2 dimensions has also been achieved during 2007-2009. From the point of view of these 2T field theories, as well as 2T particle dynamics that I developed since 1995, all known physical phenomena experienced in 3-space and 1-time dimensions, as described in 1T-physics, appear as various “shadows” of phenomena in 4+2 dimensions. 2T-physics captures “hidden” properties of physical systems in 3+1 dimensions that are systematically missed by the usual 1T-physics formulation (see simplest example). The existence of such verifiable predictions, that 1T-physics can only confirm but cannot foresee systematically, show that 2T-Physics is a larger unifying framework and an unavoidable completion of 1T-physics. I therefore expect that the methods of 2T-physics will prove to be essential in the construction of the ultimate unified theory as well as in a more complete description of all physics at all scales of distance or of energy.

I emphasize symmetries and supersymmetries in much of my research on particle physics, field theory and string theory. From time to time the symmetry structures in physics have led me to discover new physical concepts, such as Two-Time Physics (2T-Physics), as well as a few new structures in Mathematics or Mathematical Physics, in particular in supergroups, non-compact groups, and noncommutative geometry. This activity also took me on side trips into applications of symmetries in other fields of physics. Consequently, supersymmetry in nuclear physics was experimentally confirmed as an approximate symmetry of bosonic and fermionic nuclei.

Some of the theoretical computations I did in the past on the Standard Model, gauge theories, and grand unification, are currently of experimental interest. In particular the first computation of the weak interaction contribution to the anomalous magnetic moment of the muon has recently been confirmed by measurements performed more than 30 years later.
For more details on my research interests look here

Teaching

Lecture notes available online

 

Lectures on symmetries

Lectures on the Standard Model

Quantum Mechanics (a book)

Conceptual Physics

Physics for the Life Sciences