Wavelength dependence of the nonresonant photoionization cross section of a two-electron atom near the ionization threshold

T. N. Chang and T. K. Fang

Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484

(Received 28 November 1994)

We present the theoretical near-threshold photoionization cross sections of He atoms from bound excited states, using a B-spline-based configuration-interaction method. Our study has shown that in the absence of a strongly energy-dependent feature such as a doubly excited resonance, the photoionization cross sections in the immediate vicinity of the ionization threshold depend linearly on the wavelengths of the incident light. Qualitatively, following the quantum-defect theory, this linear dependence can be linked directly to the expected nearly energy-independent scattering phase shift corresponding to the wave function of the ionized electron at near-zero photoelectron energy.

PACS number(s): 32.80.Fb, 31.50.+w, 31.25.Jf, 31.15.Ar

I. INTRODUCTION

In spite of an agreement on the absolute cross section within the experimental uncertainty between our recent theoretical calculation [1] and the earlier experiment [2] on the He photoionization from the 1s\textit{2}s 1\textit{S}\textit{1}S, our theory was unable to confirm the experimental observation that the 1s\textit{2}s 1\textit{S} cross section nearly equals the 1s2\textit{s} 3\textit{S} cross section at energies close to the 1s2\textit{s} 3\textit{S} ionization threshold. In particular, our numerical calculation has shown that not only the ratio \(R \) between the 1s\textit{2}s 1\textit{S} and the 1s2\textit{s} 3\textit{S} photoionization cross sections varies noticeably as a function of the wavelength, the values of \(R \) also deviate significantly from the unity at energies close to the 1s2\textit{s} 3\textit{S} threshold. In this paper, additional theoretical considerations are presented to support our earlier conclusion that the ratio \(R \) near the 1s2\textit{s} 3\textit{S} ionization threshold should deviate from a constant value.

We will first show theoretically that, in the absence of a strongly energy-dependent feature such as a doubly excited resonance, the photoionization cross sections at energies very close to the ionization threshold follow a linear wavelength dependence. For the He atom, the 1s\textit{2}s 1\textit{S} and 1s2\textit{s} 3\textit{S} ionization thresholds are separated by approximately 520 Å (i.e., 3121.8 and 2600.6 Å for 1\textit{S} and 3\textit{S}, respectively) and, consequently, the ratio \(R \) at wavelengths close to the He 1s2\textit{s} 3\textit{S} threshold (e.g., between 2600 and 2400 Å) cannot be a constant since the 1s2\textit{s} 3\textit{S} photoionization cross sections are no longer, whereas the 1s2\textit{s} 3\textit{S} cross sections remain, being linearly dependent upon the wavelengths. To further support our conclusion, the detailed theoretical cross sections based on B-spline-based configuration-interaction (BSCI) calculation [3,4] on photoionization from bound excited 1\textit{S}\textit{1}S and 1\textit{S}\textit{3}P states with photon energies up to approximately 0.1 eV above their respective ionization thresholds are also presented.

II. THEORY

The photoionization cross sections (in units of \(a_0^2 \)) from an initial state |\(\text{i} \rangle \) to a final state |\(\text{f} \rangle \) in a single ionized continuum are given theoretically by [3,4]

\[
\sigma = \frac{8}{3} \pi^2 \alpha (E_\gamma) |D_{\text{EF}}|^2 ,
\]

where \(E_\gamma \) is the photon energy given in atomic unit, \(\alpha \) is the fine-structure constant, and \(g(E) = E + E^{-1} \) for the dipole length and velocity approximations, respectively. The dipole matrix \(D_{\text{EF}} \) is given by

\[
D_{\text{EF}} = \langle \Phi_\text{F}^A | \hat{D} | \Phi_\text{E}^A \rangle ,
\]

where \(\hat{D} \) is the dipole operator and \(\Phi_\text{E}^A \) and \(\Phi_\text{F}^A \) are the state wave functions of the initial and final states. The symmetries of the initial and final states, each identified by a set of angular momentum quantum numbers in the LS coupling, are denoted by \(\Lambda \) and \(\Lambda' \), respectively [3,4]. If the initial state |\(\text{i} \rangle \) of the photoionization is not strongly correlated, its state function \(\Phi_\text{E}^A \), calculated in the BSCI procedure for a two-electron or a divergent atom [3,4], is dominated by a single configuration series in terms of its corresponding configuration series function \(\Xi_{E,\text{1s}1p}^\Lambda \), e.g., the 1s series in terms of \(\Xi_{E,\text{1s}1p}^\Lambda \) for He 1\textit{S}\textit{1}S states. Similarly, in the absence of doubly excited resonance, the final-state continuum is also dominated by a single configuration series function, e.g., \(\Sigma_{E,1\text{ss}1p}^\Lambda \) for the 1\textit{S}pp 1\textit{S}s continuation. As a result, qualitatively, the near-threshold nonresonant 1\textit{S}ns 1\textit{S}s → 1\textit{S}ep 1\textit{S}pp photoionization of He is dominated by the \(\text{ns} \rightarrow \text{ep} \) one-electron transition. Following the BSCI approach, the ionized electron, i.e., the outer electron occupying the \(\text{ns} \) and \(\text{ep} \) orbitals in its respective initial and final states, is represented by the effective one-electron functions \(\xi_{\text{ns}} \) and \(\xi_{\text{ep}} \) defined by equations similar to Eq. (10) in Ref. [3], i.e.,

1050-2947/95/52(3)/2052(5)/$06.00 2052 ©1995 The American Physical Society
\[\xi_{ns}(r) = \sum_{\nu} C_{1sns,1s\nu}(1s,\nu) \chi_{\nu}(r) \] (3)

and

\[\xi_{\nu}(r) = \sum_{\nu} C_{1\nu}(1s,\nu\nu) \chi_{\nu\nu}(r) \] (4)

where \(\chi_{\nu\nu} \) is a nearly complete set of discretized B-spline-based hydrogenic functions and \(C_{\nu}(1s,\nu) \) represents a set of coefficients in the state function corresponding to the \(1s/1l \) configuration series. The kinetic energy \(\epsilon \) and the momentum \(k \) of the outgoing photoelectron are given by \(\epsilon = k^2/2 = E + E_f \), where \(E \) is the total energy measured from the double-ionization threshold in the BSCI approach and \(E_f \) is the ionization energy of the remaining 1s electron of the \(\text{He}^+ \) ion. Qualitatively, for the nonresonant \(1sns \rightarrow 1s\nu \) photoionization, the dipole matrix \(D_{El} \) is dominated by a one-particle radial matrix

\[d_{ei} = \langle \rho_{ei} | d | \xi_{ns} \rangle \] (5)

where \(d \) is the radial dipole operator and

\[\rho_{ei}(r) = \frac{1}{A} \left(\frac{2}{\pi k} \right)^{1/2} \xi_{ei}(r) \] (6)

is normalized asymptotically according to the expression

\[\left(\frac{2}{\pi k} \right)^{1/2} \sin \left(kr + \frac{q}{k} \ln(2kr) - \frac{1}{2} \pi + \delta_C + \delta_I \right) \] (7)

as \(r \to \infty \),

where \(A \) is the amplitude of the oscillating function \(\xi_{ei} \) at large \(r \), \(q \) is the effective nuclear charge experienced by the outgoing photoelectron, and \(\delta_C \) and \(\delta_I \) are the Coulomb and scattering phase shifts, respectively.

The radial functions \(\xi_{ns} \) corresponding to the \(1s2s \) \(1^3S \) and \(1s3s \) \(1^3S \) initial states are shown in Fig. 1. As expected, \(\xi_{ns} \) extends approximately to a distance \(r_c \sim 2(r_e) \), or \(3v^2/q \), where \(v \) is the corresponding effective principal quantum number. If the photoelectron energy \(k^2 \) is substantially smaller than the Coulomb interaction \(2q/r_e \), or

\[k^2 \ll \frac{2}{3} \frac{q \rho_{ei}}{v^2} \] (8)

the radial \(\rho_{ei} \), which effectively represent the oscillating part of the outgoing electron in the continuum, should be nearly independent of \(k \) up to \(r_c \). In fact, the lack of energy dependence in \(\rho_{ei} \) at small \(r \), or, equivalently, a nearly energy-independent scattering phase shift, is expected from quantum-defect theory as the nearly constant quantum defect of the highly excited Rydberg state extends across the ionization threshold. This is clearly illustrated in Fig. 1, where a few selected \(\rho_{ei} \) at momenta close to the ionization threshold are shown to be essentially indistinguishable up to \(r_c \). As a result, the dipole matrix \(d_{ei} \), calculated in the velocity approximation, should also be independent of the energy. Together with the \(E^{-1} \) energy dependence from Eq. (1), it can be concluded readily that the near-threshold photoionization cross section is linearly dependent upon the wavelength \(\lambda \) of the incident photon in the dipole velocity approximation. As for the dipole length approximation, the small difference in \(\rho_{ei} \) is amplified by the operator \(r \) at a larger distance. As expected, our calculation has shown that the dipole matrix \(d_{ei} \) in the length approximation increases as a function of \(\lambda \), leading to a cross section that is also linearly proportional to \(\lambda \). In the dipole acceleration approximation, the radial matrix \(d_{ei} = \langle \rho_{ei} | 1/r^2 | \xi_{ns} \rangle \) is also energy independent. This appears to suggest a \(\lambda^2 \) dependence

FIG. 1. Radial functions \(\xi_{ns} \) corresponding to the \(1s2s \) \(1^3S \) and \(1s3s \) \(1^3S \) initial states and the radial functions \(\rho_{ei} \), which represent the oscillating part of the outgoing electron in the \(1s\nu \) \(1^1P \) continua. To separate \(\xi_{ns} \) from \(\xi_{2\nu} \), \(\xi_{3\nu} \) is plotted with negative initial slope.
for the near-threshold photoionization cross section. However, a detailed examination shows that within the dipole acceleration approximation, an additional one-particle radial matrix $\langle \rho_{ep} | 1/r^2 | \chi_{1s} \rangle$ also contributes significantly to D_{EI}. In fact, the combined contributions from $\langle \rho_{ep} | 1/r^2 | S_{1s} \rangle$ and $\langle \rho_{ep} | 1/r^2 | \chi_{1s} \rangle$ indeed yield a λ^{-1} dependence for the dipole matrix D_{EI}. This again leads to a linear λ dependence for the near-threshold cross section. We should note, however, that this linear λ dependence does not apply to a system such as a negative ion since the oscillating function ρ_{ep} is energy dependent at small r due to the lack of long-range Coulomb interac-

TABLE II. Threshold wavelengths $\lambda_{\text{threshold}}$ (in angstroms) and the $1.3^1S \rightarrow 1.3^1P$ photoionization cross sections σ (in megabars) near the ionization threshold of bound excited He $1snp 1.3^1P$ states with $n = 2$ to 5. The cross sections are derived from a linear fit in λ using calculated values. The overall agreement between the length and velocity results is better than 1%. Only length results are listed.

<table>
<thead>
<tr>
<th>k</th>
<th>$1s2^1P$</th>
<th>$1s3p^1P$</th>
<th>$1s4p^1P$</th>
<th>$1s5p^1P$</th>
<th>$1s2p^3P$</th>
<th>$1s3p^3P$</th>
<th>$2s4p^3P$</th>
<th>$1s5p^3P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3679.6</td>
<td>8263.4</td>
<td>14 666.9</td>
<td>22 892.4</td>
<td>3422.1</td>
<td>7845.9</td>
<td>14 097.6</td>
<td>22 173.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda_{\text{threshold}}$ (Å)</th>
<th>$\sigma_{1.3^1S \rightarrow 1.3^1P}$ (Mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.947</td>
</tr>
<tr>
<td>0.01</td>
<td>0.946</td>
</tr>
<tr>
<td>0.02</td>
<td>0.944</td>
</tr>
<tr>
<td>0.03</td>
<td>0.939</td>
</tr>
<tr>
<td>0.04</td>
<td>0.933</td>
</tr>
<tr>
<td>0.05</td>
<td>0.925</td>
</tr>
<tr>
<td>0.06</td>
<td>0.916</td>
</tr>
<tr>
<td>0.07</td>
<td>0.905</td>
</tr>
<tr>
<td>0.08</td>
<td>0.893</td>
</tr>
<tr>
<td>0.09</td>
<td>0.879</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\sigma_{1.3^1P \rightarrow 1.3^1D}$ (Mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
</tr>
<tr>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
</tr>
<tr>
<td>0.07</td>
</tr>
<tr>
<td>0.08</td>
</tr>
<tr>
<td>0.09</td>
</tr>
</tbody>
</table>
For many other heavier atoms (e.g., Li, Na, Mg, Ca, Zn, Rb, and Sr), the existing experimental near-threshold photoabsorption data [5] also appear to follow the linear \(\lambda \) dependence suggested in this paper.

III. RESULTS AND DISCUSSIONS

In Table I, the theoretical \(^1S \rightarrow ^1P \) cross sections \(\sigma \) near the He 1sns \(^1S\) ionization thresholds for \(n = 2 - 5 \) states are tabulated. The wavelengths \(\lambda_{\text{threshold}} \) and the cross sections \(\sigma_{\text{threshold}} \) at the threshold (i.e., at \(k = 0 \)) are also given. In Table II, selected data for the 1snp \(^1S \rightarrow ^1S\) and the 1snp \(^1P \rightarrow ^1S\) photoionization are listed. The linear \(\lambda \) dependence can be seen clearly in Fig. 2 for a few selected \(^1S \rightarrow ^1P\) and \(^1P \rightarrow ^1D\) transitions. At higher energies, our calculated cross sections are in good agreement with the earlier theoretical results by Jacobs [6].

The present theory should also apply to the hydrogen-like atoms. Theoretically, according to the Kramers formula [7], the nonrelativistic cross section for the photoionization from an excited state of principal quantum number \(n \geq 2 \) is proportional to \((1/n^5)(\hbar \omega / \omega)^3 \), i.e., [7]

\[
\sigma_n \sim \frac{1}{Z^2} \left(\frac{\omega_n}{\omega} \right)^3 \frac{1}{n^5} \left(\frac{\hbar \omega_n}{Z^2} \right)^3 \left(\frac{\omega_n}{\omega} \right)^3 n,
\]

where \(\hbar \omega_n = Z^2 \) Ry is the ionization energy of the hydrogen-like atom in its ground state, \(Z \) is the nuclear charge, \(\hbar \omega_n = Z^2 / n^2 \) Ry is the ionization energy of the excited state, and \(\hbar \omega = h c / \lambda \) is the energy of the incident photon. Near the threshold, \(\omega = \omega_n + \Delta \omega \) and \(\Delta \omega \ll \omega_n \). The energy-dependent part in Eq. (9) can be expressed approximately by

\[
\sigma_n \sim \frac{1}{Z^2} \left(\frac{\omega_n}{\omega} \right)^3 \frac{1}{n^5} \left(\frac{\hbar \omega_n}{Z^2} \right)^3 \left(\frac{\omega_n}{\omega} \right)^3 n,
\]

where \(\hbar \omega_n = Z^2 \) Ry is the ionization energy of the hydrogen-like atom in its ground state, \(Z \) is the nuclear charge, \(\hbar \omega_n = Z^2 / n^2 \) Ry is the ionization energy of the excited state, and \(\hbar \omega = h c / \lambda \) is the energy of the incident photon. Near the threshold, \(\omega = \omega_n + \Delta \omega \) and \(\Delta \omega \ll \omega_n \). The energy-dependent part in Eq. (9) can be expressed approximately by

\[
\sigma_n \sim \frac{1}{Z^2} \left(\frac{\omega_n}{\omega} \right)^3 \frac{1}{n^5} \left(\frac{\hbar \omega_n}{Z^2} \right)^3 \left(\frac{\omega_n}{\omega} \right)^3 n,
\]

where \(\hbar \omega_n = Z^2 \) Ry is the ionization energy of the hydrogen-like atom in its ground state, \(Z \) is the nuclear charge, \(\hbar \omega_n = Z^2 / n^2 \) Ry is the ionization energy of the excited state, and \(\hbar \omega = h c / \lambda \) is the energy of the incident photon. Near the threshold, \(\omega = \omega_n + \Delta \omega \) and \(\Delta \omega \ll \omega_n \). The energy-dependent part in Eq. (9) can be expressed approximately by

\[
\sigma_n \sim \frac{1}{Z^2} \left(\frac{\omega_n}{\omega} \right)^3 \frac{1}{n^5} \left(\frac{\hbar \omega_n}{Z^2} \right)^3 \left(\frac{\omega_n}{\omega} \right)^3 n,
\]

where \(\hbar \omega_n = Z^2 \) Ry is the ionization energy of the hydrogen-like atom in its ground state, \(Z \) is the nuclear charge, \(\hbar \omega_n = Z^2 / n^2 \) Ry is the ionization energy of the excited state, and \(\hbar \omega = h c / \lambda \) is the energy of the incident photon. Near the threshold, \(\omega = \omega_n + \Delta \omega \) and \(\Delta \omega \ll \omega_n \). The energy-dependent part in Eq. (9) can be expressed approximately by

\[
\sigma_n \sim \frac{1}{Z^2} \left(\frac{\omega_n}{\omega} \right)^3 \frac{1}{n^5} \left(\frac{\hbar \omega_n}{Z^2} \right)^3 \left(\frac{\omega_n}{\omega} \right)^3 n,
\]
\[
\left(\frac{\omega_n}{\omega} \right)^\mu = \left[1 - \frac{\Delta \omega}{\omega} \right]^\mu \approx 1 - \mu \frac{\Delta \omega}{\omega} = (1 - \mu) + \frac{\mu \omega_n}{2 \pi c} \lambda .
\]

Substituting Eq. (10) into Eq. (9) leads immediately to the linear \(\lambda \) dependence for the near-threshold nonresonant photoionization cross section, i.e.,

\[
\sigma_n \sim C_1 \lambda - C_2 ,
\]

where \(C_1 \) and \(C_2 \) are two positive energy-independent constants. As expected, the photoionization cross section decreases as the photon energy increases (or as \(\lambda \) decreases). In Fig. 3, the total \(\sigma_{\text{threshold}} \) from bound excited \(1s\sigma^1 \) and \(1s\pi^1 \) states are plotted against \(\nu \). Similar to the nonresonant photoionization of the hydrogen atom described by Eq. (9), the total \(\sigma_{\text{threshold}} \) increases linearly as a function of \(\nu \).

The earlier experimental near-threshold cross sections for photoionization from the He \(1s2s \) \(1S \) metastable states [2] appear to support the linear \(\lambda \) dependence suggested in this paper. A reexamination of the experimental ratio \(R \) between the \(1S \) and \(3S \) cross sections near the \(1s2s \) \(3S \) threshold is necessary to establish the quantitative accuracy of the theoretical calculation. Finally, we note that a reliable theoretical estimate of the absolute cross sections at a few selected energies from bound excited states, for transitions that are not dominated by the strong correlation effect, could potentially be used to determine experimentally the relative population densities of atoms in various excited states.

ACKNOWLEDGMENTS

This work was supported by the NSF under Grants Nos. PHY91-11420 and PHY94-13338.