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B-Spline-Based Configuration-Interaction Approach for
Photoionization of Two-electron and Divalent Atoms

T. N. Chang

Department of Physics and Astronomy
University of Southern California
Los Angeles, CA 90089-0484, U.S.A.

1. Introduction

Recent applications of high resolution intense lasers (see, e.g., Chapter 11 of
this volume) have opened up opportunities for detailed studies of multi-electron
interactions involving two strongly interacting electrons outside a closed shell 1S
core of a divalent atom. Elaborate experiments in shorter wavelength regions have
also been carried out with more advanced applications of the synchrotron radiation
to highly correlated atomic systems (see, e.g., Chapters 10 and 12 of this volume).
In addition, operating at high synchrotron radiation intensity, Domke, Remmers,
and Kaindl [1] have recently observed the doubly-excited 2pnd 1 P series of He below
the Het N=2 threshold with an improvd energy resolution of = 4meV. Parallel to
the fast growing experimental advances, significant progress have also been made
in many of the existing theoretical approaches, which are capable of elucidating
quantitatively the many-electron effects in photoionization. Some of the recent
theoretical developments are reviewed in Chapters 1, 3, and 5-7 of this volume.

For a transition originated from a bound state confined in a finite volume to a
continuum extending to infinity, a complete characterization of the asymptotically
oscillating continuum wave functions is not necessarily required if the transition is
dominated by the short-range interaction. In fact, the transition matrix can be
evaluated accurately with an effective continuum wave function, which is a linear
combination of a L? integrable basis confined in a finite volume and normalized
with proper boundary condition consistent with its asymptotoic behavior at a large
distance. Earlier attempts have been made by Heller, Reinhardt, and co-workers
[2], which have led to successful applications to electron-hydron scattering and pho-
toejection of one and two electron from H~. Using an L? calculational procedure,
Moccia and Spizzo [3] (see, also, Chapter 7 of this volume) have successfully repre-
sented the continuum spectrum by a set of elaborate one-electron orbitals including
a modified Slater-type orbitals (STO) with an explicit cos(kr) dependence. In addi-
tion, Martin and co-workers [4] have employed the usual STO basis to determine the
phase shifts of the continuum wave functions with an elaborate fitting procedure.
The earlier multiconfiguration Hartree-Fock (MCHF) approach for the continuum
has also been extended to study the resonance structure for the photoionization of
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He [5] (see, Chapter 6 of this volume). The purpose of this chapter is to review
the basic theoretical features of an alternative L? method, i.e., a B-spline-based
configuration-interaction method for continuum spectrum (CIC) [6], which has been
applied recently with success to photoionization of a two-electron atom [7] and the
single and multiphoton ionization of a divalent atom [8].

In Section 2 we present the basic procedure of the B-spline-based configuration-
interaction (CI) procedure, including the use of frozen-core Hartree-Fock (FCHF)
orbitals for divalent atoms. In Section 3 we extend the basic procedure outlined
in Section 2 to continuum spectrum, including detailed discussion on calculational
procedures for the scattering phase shifts, the energies and widths of the doubly
excited resonant series, and the single- and multiphoton ionization cross sections.
Applications to two-electron atoms and divalent atoms are presented in Section 4.

2. Basic Theoretical Procedure

Within the Breit-Pauli approximation [9], the total Hamiltonian is given by
H - H nr + H m (1)

where H,, is the sum of all relativisitic contributions represented by terms given by
Egs. (3-7) in chapter 4 of this volume. The N-electron nonrelativistic Hamiltonian
in atomic unit is given by

N 2 g2 N
Hulfufi ) = X gqi -2+ 3 + 2o (@
=1 2dr; r; 2r; i<y Tij
where £ is the one-particle orbital angular momentum operator and Z is the nu-
clear charge. In a simple configuration-interaction (CI) calculation, the energy
eigenvalue and the state wave function corresponding to an energy eigenstate of
a two-electron or a divalent atom can be evaluated by diagonalizing the Hamilto-
nian matrix constructed from a basis set consisting of J-dependent basis function
’l,bgen,e,(ﬁ, g, - ) The basis function 'lﬁf}en,g is characterized by a two-electron
configuration (nf,n'¢') and a set of quantum numbers 2 = (SLJM;), where S is
the total spin, L is the total orbital angular momentum, and J and M; are the
total angular momentum and its magnetic quantum number, respectively. The J-
dependent basis function Q,bgen,g, is, in turn, expressed as a sum of J-independent

basis function ¢,‘}£n,£, over all Mg and M [10], i.e.,

a  _ _\L-S w2 (S L J A
¢n¢‘nl¢r - MSZ,M( 1) (2J+ 1) (MS M —'MJ) wnt,nlll ’ (3)
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where A = (SLMgsM) represents a set of quantum numbers S, L, Mg, and M. Mg
and M are the magnetic quantum numbers of S and L, respectively. Within the
central field approximation, the basis function ¢,‘z\e’n,@ can be expressed as a sum of
N-particle Slater determinant wave functions over all magnetic quantum numbers
in the form of [11]

A (P = X (<1)7Y(28 +1)(2L + 1)]Y?
, all m's
¢ v L i 1 S mm,m'm! ;5 o
(o ) (i <y ) S G, @

where the Slater-determinant wave function is constructed from the one-electron
orbitals ug, i.e.,

Brymen T (P Fay o) = (NY) Y2 dety | up(7) |, (5)

and [ represents the quantum numbers nﬂ,ﬁﬂ,mﬂ, and M,,, which define the one-
electron orbital function. More specifically, Un¢mm, is given by the product of its
spatial and spin parts, i.e.,

Yim(8,0) o (m,). (6)

The only component in the basis functions that is not predetermined is the radial
part x of the one-particle orbital function u. As a result, this simple CI procedure
is essentially non-variational and its success depends critically on the choice of x in
the construction of the Hamiltonian matrix.

Untmm, ( F) .

Xnt(r)

2.1. Hamiltonian Matriz and Frozen-core Hartree-Fock Approzimation

For a divalent atom of N electrons, the orbital functions for the N-2 core elec-
trons are given by the first N-2 of the ug’s in Eq. (5) and the remaining two
orbital functions represent the orbitals of the two valence electrons denoted by a
two-electron configuration (nf,n'¢'). To ensure the normalization, a factor of 1/1/2
should be added to Eq. (4) when nf = n'¢’. The nonrelativistic matrix element for
H,, between basis functions corresponding to a pair of two-electron configurations,
(nuly,nyt,) and (nsés,n,L,), can be expressed as the sum of three energy terms
[11], i.e.,

2
< ¢11,A,‘£,,,n,,lu | Hpy | Q)brjz\glg,n.,&., > = ;J Ei(nulun,ty,nslsnyly),  (7)
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where

Eo(n#e“ nueln n6£5 n’1£'7) e

(6nun6 6"‘1/""1 6£u£6 6&,&1 + (—- 1)L+S+£6 +L1 6";4""1 6"1!"6 52;1.&/ 6@,,[5 ) Ecof; I (8)

Ei(nulyn,ly,nslsnaly) = S8u,0600 (Snuns B + nym, BE) +

(=1) 5540 8y,0,80,6, (bnum, By + Snums by ) » (9)

Ez(np,ep, nueua n5e¢5 n'Ye’7) =

Gl PICEVR

} <nul,,n,l, | VF| nsls,n,l, >

¢, ¢, L
+ 2 (-1)° { 2ok } < byl |V || nolyynsts >],  (10)

and
REF = [ dr Xn,o,(r) BEE () Xn,e, (r) - (11)

The total Hartree-Fock energy EXF for the N-2 core electrons is evaluated by using

the radial functions x,,, of the occupied core orbitals, where x,., satisfy the
eigenequation

HF
hlo Xnoly = €ngly Xnolo - (12)
The one-particle Hartree-Fock Hamiltonian is given by

1d* Z 1¢(¢+1)

Wi =(-gga~7tg a )tV (0, (13)
and the frozen-core Hartree-Fock (FCHF') potential is defined explicitly by [11]
core 280 + 1
VETE) 1) = 3 2L € VO it xowtsir) 1) i)
g 5 T (Y Gt S57) ) a0, (19

218



where

(el V¥ (abr) I €) = (el e)ellct | &)

174
r<

/Ooo ds a(s)b(s) sy (15)

The two-particle Coulomb matrix in Eq. (10) is expressed in terms of the radial
integral

<ab|| V¥ [l ed>= [~ drxa(r)(ta | V*(xeo xa;7) Il &) Xe(r) - (16)

and (£ | C™ || ¢) in Eq. (15) is the reduced matrix element of the tensor operator
C! for spherical harmonics, i.e., given explicitly by

el cte) = (-1fee+nEe+ DI (§ 5 §) . an

In a frozen-core Hartree-Fock (FCHF) approximation, all radial functions x

included in the Hamiltonian matrix calculation are also generated from Eq. (12),

and the total Hartree-Fock core energy EXF is a constant, which can be set to zero

for simplicity. As a result, the nonrelativistic Hamiltonian matrix element reduces
to a simple expression:

< '()br;.&,,l,,,n,,lp | Hﬂ" I "prﬁsla,n.,&, >=
(6n“n56n,,n.,6£u£56£,,&., + (—1)L+S+£6+L'6n,,n.,6n,,n661,‘l.,6£,,£5)(fn,,l,, + En,,l,,)

+ Ey(n,l,n,l,,nslsn,L,) . (18)

By using the predetermined one-particle orbital functions, such as the FCHF radial
functions generated by Eq. (12), the CI approach discussed above is carried out
without the optimization procedure for each energy eigenstate, which is required in
other more elaborate CI methods. In spite of its simplicity, a direct applications of
this approach is limited by its inability to include the positive-energy orbitals in the
basis functions due to the numerical difficulty in the calculation of the two-electron
matrix < ab || V¥ || ed > resulting from the long-range behavior of the Coulumb in-
teraction. In most of the earlier applications (e.g., truncated-diagonalization method
or TDM approach [12,13]), the basis functions are limited to the products of two
negative-energy (bound) one-electron orbitals (i.e., BB-type). The CI contribution
from the positive-energy (continuum) orbitals, in terms of basis functions includ-
ing products of bound-continuum (BC-type) and continuum-continuum (CC-type)
orbitals, is often excluded due to the numerical consideration, even for highly corre-
lated systems. This quantitative obstacle can be conveniently circumvented if one
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replaces the incomplete set of bound-only one-electron orbital functions by a nearly
complete set of finite L? basis functions, which includes both bound and continuum
one-electron orbital functions confined in a finite radius R. In practice, the radius
R should be larger than the estimated physical size of the energy eigenstates of our
interest.

For a divalent atom, a straightforward application of the FCHF-based CI proce-
dure will only take into account the multi-electron interactions for the two valence
electrons outside a closed shell !S core. The contribution from the intrashell core
excitation and the intershell core-valence interaction [14] to the energy eigenvalue
is often represented by a parametrized long-range dipole core-polarization potential
in the form of [14-17]

(67 —(r/r0)®
Vo = = [1—etin)] (19)

where a is the static dipole polarizability and rq is a cut-off parameter for V, as r
approaches zero. For a more detailed calculation, a short-range interaction [14,16]

2 2
Vo= aute P+ Y byrtePor (20)
p=0 u=0

is also included to account for the additional interactions (e.g., the relativistic ef-
fects) involving the core electrons. Following a detailed calculation, Chang and
Chung [14] have concluded that the combined use of V, and V, to represent the
core-related interactions is well supported except for those dynamical properties
closely associated with the small r behavior of the radial functions.

2.2. B-Spline-Based Finite Basis Set

The ability of the B-Spline-based finite basis set to account for the many-body in-
teractions in atomic process was first demonstrated ezplicitly in a recent relativistic
many-body perturbation application by Johnson et al [18]. Unlike the Slater-type
orbitals, which favor the small r region, the B splines, with similar amplitude be-
tween r = 0 and r = R, tend to treat the entire physical region more uniformly.
Another key advantage in the application of B splines is its independence of any
a priori procedure in selecting the nonlinear parameters for the exponential func-
tions. Detailed discussion of the basic properties of B splines can be found elsewhere
[18-20]. The present discussion will be limited to those features related to the cal-
culation of the one-particle radial functions x employed in the construction of the
CI basis functions.

In a bound state calculation, the set of B splines of order K and total number n
is often defined with an exponentially increasing knot sequence[18,20]. The choice
of such a knot sequence satisfies the need for a densely populated B splines near
the nucleus in order to accommodate the fast raising inner s-orbitals at small r.
On the other hand, a more evenly populated B splines at larger r is required if
the oscillating behavior of the positive energy orbitals at large distance can also be
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adequately represented. As a result, for transitions involving both a bound state
and a continuum, we have chosen a sine-like knot sequence d, defined by [6]

— 1)Ah
d, =R sin[g—(%)y]; v=1,2,---,n—K+2, (21)

where Ah = R/(n — K + 1). The distribution of knot points can be adjusted by
changing the position of the first non-zero knot d;, which in turn determines the
value of y according to Eq. (21). By employing such a knot sequence, we are able
to limit the size of B-spline set to a modest n in our calculation. At the same time,
we are able to take into account both the small- and large-r behavior of the orbital
functions.

The nonrelativistic radial functions x usually satisfy an eigenequation, e.g.,
Eq. (12), in the form of

—577 T V(r)x = ex (22)

where the potential V (r) is non-local in general. The solution x is expanded in
terms of a set of B splines defined between r =0 and r = R, i.e.,

n

x(r) = X e Bi(r). (23)
1=1
The index K is omitted from the functions B; for simplicity. At the endpoints r = 0
and r = R, all B splines equal zero except for B; and B,, i.e.,

Biy(r=0) =1 and B,(r=R)=1. (24)

In our calculation, the radial functions x are subject to the nonrelativistic boundary
conditions, x(0) = x(R) = 0, which can be satisfied if we set

c1 =cn = 0. (25)

Substitution of Egs. (23) and (25) into Eq. (22) leads to a (n—2) X (n—2) generalized
eigenvalue equation:

HC =€e¢AC, (26)
where H and A are (n — 2) X (n — 2) matrices given by
1 d?
H;; = ——2—<B,'|F|BJ'>+<B,'|V|B]'>;
trand j=2,...,(n—1), (27)
A;j =< B; | Bj >; tand 7 =2,...,(n—1). - (28)

221



The radial eigenfunction x, of Eq. (22) corresponding to an energy eigenvalue ¢, is
given by

n—1
Xu(r) = X e Bi(r), (29)
=2
where the set of n—2t coefficients ¢; forms the eigenvector,
Cu . (62, C3y.--, cn—l) 3 (30)

of Eq. (26).

The calculated ¢€,, of the first few lowest negative-energy solutions correspond-
ing to a specific orbital angular momentum £ with their eigenfunctions completely
confined in a radius R should agree with the numerical results of Eq. (22) from
direct integration. The positive-energy orbitals, with energy €,, up to few Ry,
should exhibit an oscillating behavior at large r. In practice, only those positive-
energy orbitals with momentum k,, = (26,,¢)% that satisfy the boundary conditions,
Xut(r = 0) = le(r - R) =0, or,

lm

Z
k., R + k—ln(Zkl,gR) ~ 9 + é¢c + 0y = mm, (31)
L
should appear in the nearly complete set of discretized radial functions x,.. For a
pure hydrogenic potential, i.e., if
Z 16(L+1)
V(z)=-=+ -~ 32
( ) r 2 T2 ) ( )
the short-range phase shift §, vanishes and é; equals the analytical Coulomb phase
shift. Following the numerical procedure described above, the n-2 radial eigenfunc-
tions x, of Eq. (22) form the one-particle finite basis set in the CI basis functions.

In calculating the Hamiltonian matrix, the CI basis set consists of a number
of two-electron configuration series nfl'. Each nll series includes a set of basis
functions '(bﬁe’n,g, corresponding to one of the valence electrons in a fixed orbital
nf and the other one with orbital angular momentum ¢ but variable energy, both
negative and positive, over an entire set of eigenfunctions x of Eq. (22). A configu-
ration series is in theory equivalent to an open channel in close-coupling calculation
when the nf orbital is bound. Such a series includes only the BB- and BC-type of
configurations. The CC-type of configurations are included in the basis set when
nf represents a positive-energy orbital.

2.3. State Wave Function and Energy Level

Within the nonrelativistic FCHF approximation, the energy eigenvalue E‘f of a

state | 4 > is calculated by diagonalizing the Hamiltonian matrix given by Eq. (18).
The corresponding state wave function is given by

o = Xa; B o (33)
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where the configuration series function
=A . A 1p! A
B, = . Cu(ve,v ) Y,y e (34)
V,

represents the contribution to the state wave function from the v£¢' configuration
series. A complete set of coefficients Cj(v¢,1't') forms the eigenvector of the state

| p>.

For a divalent atom, the calculated energy eigenvalue is denoted as E',ﬁ L n,t, if

the eigenstate | 4 > is dominated by a two-electron configuration (n;4; n,4,) with
the inner valence electron in an n;4; orbital and the outer valence electron in an
n,l, orbital. For simplicity, the ionization threshold with both valence electrons

removed is set to have a zero energy. The calculated energy eigenvalue E,ﬁz_; nol,

corresponding to an energy eigenstate (nil; n,t,) 25+1], can therefore be expressed in
Ry unit in terms of the effective quantum number Vp, ¢, leading to the n;{; ionization
threshold of the atomic ion, i.e.,
ZZ
Er .0 (N,Z) = —E 4 (N -1,Z) - > (35)
nil;
where Z, = Z — N + 1 is the effective nuclear charge and E,{',t'_(N —1,7) is the
ionization energy required to remove the n;/; electron from the corresponding atomic
ijon of N-1 electrons. The quantum defect is given by py, = 1o — Vn,e;-

2.4. Oscillator Strength

For an atomic transition from an initial state | @ > to a final state | b >, the the-
oretical oscillator strengths in the dipole-length and dipole-velocity approximation
are given by [21]

1
fbea = ?AEba & 1= q’f“lzralq)bAb >|2a (36)
9a all M’s o
and
4 "
foo= 0B} T <@ | XVal8t >, (37)
9a all M’s :
respectively. The transition energy
AE,, = E} — E) (38)

is given in Ry unit and
go = (28, +1)(2La+1) (39)

is the degree of degeneracy of the initial state. The oscillator strength fj, is positive
for an absorption when AE,, is positive and it is negative for an emmision when
AE;, is negative.
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For transitions involving the two outershell electrons, the sum over the square of
the dipole matrix in Eqgs. (36-37) can be evaluated with a straightforward application
of the angular momentum algebra and the oscillator strengths in the dipole-length
and dipole-velocity approximation are given by

2L, +1
sza = 55'1;54 'b—3—AEba I Fbea | 2 (40)
and
- 4(2L, + 1 . "
fba. = 6SbSa (—_bg__)A'l:T}ba1 | Fba | 2’ (41)

respectively. The oscillator strength f¢, for an emission from an upper state | b >
to a lower state | @ > is related to the oscillator strength f%** for an absorption from
a lower state | @ > to an upper state | b > by

e __ 2La+1 abs

The transition amplitude F, is given by

Fra = Z CbA"("}f}, n;l;) CaA“(n:-K:-,nie,;) Db]; 3 (43)
where i
Di = dy(5'7,7) + dya(55",58") + (—1)%dpa(5"7, 33")
+(=1)%dya(35",4"3) (44)
is the dipole transition matrix between configurations (n}£;,n;¢;) and (njf},n;L;).

For a configuration corresponding to two equivalent electrons, a factor of 1/sqrt2
should be added. The matrix element d;, is the product of the angular coefficient
p and the one-particle radial integrals, i.e.,

dba(j’j’ 7',7’) g p(egejeienAbAa)
< Xnjt; | Xnits >< Xmie | 2| Xnie, >, (45)

where < Xn'e, | ¢ | Xnte. > is the one-particle radial dipole matrix and ¢ is the radial

part of the position and gradient operators in the length and velocity approximation,
respectively. The overlapping integral < xpn,e; | Xnie; >= 6n;n;6¢;¢; in the FCHF
approximation. The angular factor p is given f)y

p(E1020584; ApA,) = (—1)%64,,[(261 + 1) (265 + 1)]Y/2

6 1 43 L, 1 L
(ooo 6 6 6 [ (46)
where A, represents the quantum numbers S, L, Mg, and M associated with the
state | a >.
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3. Configuration-Interaction Method for Continuum Spectrum

In this section we present the extension of the B-spline-based configuration-
interaction procedure outlined in previous section to continuum spectrum for a
two-electron or a divalent atom with a ns? 'S ground state. At energy above the
first ionization threshold, the spectrum is often dominated by a series of doubly
excited autoionization resonances embedded in a single continuum open-channel
nst. Following the notation employed in Egs. (33-34), the state wave function o4
can be separated into two parts, i.e.,

A _ =A —=A
5 = Bpnet 2 EEute (47)
polol!
where the first term represents the ns ionization channel and the second term de-
notes the combined contribution from doubly excited configurations from all closed
channels. The kinetic energy ¢ and the momentum k of the ionized electron are
given by

€= %kz = E + Ej, (48)

where E; is the ionization energy of the remaining ns electron after the removal of
the first ns electron.

3.1. Continuum Function at Large r

Asymptotically, in a direct scattering calculation, the correct wave function of
an outgoing £ electron with momentum k is given by

2 .1 . q br
—)2 sin =In(2kr) — —
(ﬂ'k) S [kr+ kln( 7‘) 5 +6(;+6g] (49)
as r — oo, where ¢ is the effective nuclear charge experienced by the outgoing
electron and &, is the scattering phase shift due to the short range interaction. The
scattering phase shift can be extracted from the present calculation by comparing
the oscillating part of the configuration series function E} ,,, for the nsf open-
channel with the asymptotic expression given by Eq. (49). We first express the

—

configuration series function B%,,, in a form identical to the Slater determinant

function ’lﬁ,‘zs& " where one of the radial functions is replaced by a one-particle
radial function
A ‘
Ee(r) = 2 Cg(ns, vE)Xue(r). (50)
v

The numerical function £.,(r) is then matched at a finite r against an asymptotic
expression employed by Burgess, i.e., [22]

Ealr) — A [g(’i)l% sin[(r) + 6 (51)
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as r — R, where ¢ and ¢ are functions of r. As r — o0, ¢ — k and

' br

6 — (kr + %ln(%r) - 5 +50). (52)
An accurate representation of the continuum by discretized finite basis set depends
critically on the matching between the calculated raidal function and the correct
asymptotic expression over a large portion of r with a constant amplitude A. The
application of the present procedure to the electron-hydrogen scattering below the
n = 2 threshold has led to a nearly perfect matching between our calculated &..(r)
and Eq. (51) (see, e.g., Fig. (1) of Ref. [6]). As a result, the scattering phase shift
6, can be determined easily without the help from any elaborate fitting procedure
such as the one proposed by Martin and Salin [3].

For a two-electron or a divalent atom, the effective nuclear charge ¢ in Eq. (52)
equals Z — 1, even when £.,(r) is actually a sum of one-particle radial functions
which are subject to a nuclear charge of Z asymptotically. At energy near a doubly
excited resonance, the phase shift §,(F) is given by

6¢(E) = 6} (imaz; E) + 6, (E,,T; E), (53)

where the smooth varying 682 (¢maz; E) can be expressed in terms of a simple poly-
nomial expansion

8 (bmas; E) = 5. a:E", (54)
i=0 :
and 6} (E,,T'; E), which is given in the usual form
I'/2
6Z(E,,I‘,E) = tan_lﬁ, (55)

represents a fast changing resonant part §;(E,,T'; E) which increases rapidly by
a total of 7 [23,24]. As a result, a set of closely populated energy eigenvalues is
required to describe the detail energy variation of the scattering phase shift across
the resonance. This is carried out by repeating our calculations at slightly varied
values of R. The energy E, and the width I' of the resonance are determined
numerically by a least square fit procedure detailed in Section 3.3.

3.2. Single- and Multiphoton Ionization
Theoretically, when the orbital function of the outgoing electron is normalized
asymptotically by Eq. (49), the cross sections (in unit of a}) for the photoionization
from an initial state | I >, with a photon energy E, given in atomic unit, are given
by '
8 2 2
o = S g(E) | Dar |, (56)
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where « is the fine structure constant and g(E) = E and E~! for the dipole length
and velocity approximations, respectively. The dipole matrix between the initial
state | I > and the final state | E > is given by

Dgr =< @3 | D(1,2) | 2] >, (57)

where

D(1,2) = D(#) + D(f), (58)

and D represent the position and gradient operators for the length and velocity
approximations, respectively.

When the final state wave function ®4 is calculated by using the discretized

finite basis set, the normalization constant (2/7k)? in Eq. (49) should be replaced
by the amplitude A given in Eq. (51). As a result, Eq. (56) should be multiplied by
a constant

2/(mk)
Ne= "5 (59)
when we replace the dipole matrix Dg; by Dg;, i.e.,
8
o =gmag(E,) Ny | Dg; [P (60)

The new dipole matrix D%, also defined by Eq. (57), is evaluated using the state
wave functions ®4 and ®# calculated with the discretized finite basis set. Alterna-
tively, the photoionization cross section can be expressed in terms of the oscillator
strength fgz; for absorption by the simple relation

4o

g = -](1_142_ fEI’ (61)

where fgr can be calculated numerically following the same procedure for the bound-
bound transitions given in Section 2.

Within the low field limit, the N-photon generalized ionization cross section oy
in cm? secV~!, with photon energy %w and outgoing electron momentum k, is

given in the lowest-order perturbation theory by [8,25]

_ 4 acwy (V) |2
IN = A ao[Fo] gf: e o

where A is the amplitude given by Eq. (51) in the CIC procedure. The summation
in Eq. (62) includes contribution from all final states with allowed total angular
momentum J;. The N-photon transition amplitude DW) from an initial state g to
a final state f is given by [26]

F: F,, -+ F .
pW) — fvLfvp Ag .
2 B =By = (N —1)a] - [Br— B, o]

(63)
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Except for the angular factor p, the transition amplitude Fj, is similar to the one
given by Eq. (43), i.e.,
Fyo = X Ci(n'l,n ;) Ce(nlll, nit;) DY, (64)

- b i
25t

where the dipole transition matrix D,;"; is given by Eq. (44) with its corresponding
angular factor p(£;£:€3ly; AyA,) in Eq. (45) replaced by p(£,£5€384; Q),), which is
related to p(£;£203L4; AyA,) by

P(£1£2£324; ﬂan) e (_1)Jb+Ja+Lb+La+Sa+£1+Zg—MJb 651,5',,
' ' 1 Jy 1 J, )
(20" +1)(27 + 1)(2L' + 1)(2L + 1) (_ R

L, J, S,
{J: LI; 1 }P(Zle2e3e4;A6Aa), (65)

where ¢=0 for linearly polarized light and ¢g=+1 for circularly polarized light.

3.3. Computational Procedure

The computational procedure employed in the CIC method is summarized in
the flow chart shown in Figure 1. In our numerical calculations, which usually
involve a few excited states in each of the doubly exicted resonant series, a radius

B-spline-based one-electron orbital functions
[ |

Hamiltonian Matrix HS:L:J Hamiltonian Matrix HSrLs7s
for the initial state for the final state
[ I
Diagonalization — E; & ®; Diagonalization — E; & ®;

[ |
Phase Shift : Phase Shift
[ I
Resonance ] .. Resonance
Width & Bound—contmpum Transitions Width &
Position Photoionization Position

Figure 1. Computational procedure for the CIC calculation.
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of R = 120 — 140a, is used. The B-spline set is generally limited to a modest size
of n = 80 — 100 with k = 9 — 11. Approximately fifteen to twenty-five R values
are included in a typical calculation for a complete description of a series of doubly
excited resonant states.

3.3.1. Diagonalization procedure

Although it is necessary in general to include a larger number of configuration
series for a highly accurate quantitative calculation, the state wave function L is
usually dominated by a limited number of configuration series. A full diagonaliza-
tion of a hamiltonian matrix with over a few thousands configurations is not only
time consuming but also often unnecessary, since in practice, only a small number
of energy eigenstates are of interest in our calculation. To minimize the compu-
tational effort and the hardware requirement, we have developed a diagonalization

procedure similar to the standard Davidson procedure [27].

For a N X N real symmetric hamiltonian matrix constructed from a basis set

{i;i=1,2, -+, N}, i.e., Hyj =< ¢; | H | ¢; >, the state wave function (I),j‘

corresponding to an energy eigenvalue €, is represented by a set of coefficients {ct;
i=1,2,.---, N}, ie,
N

@,, = Z cf v,b,'. (66)
1=1
In practice, over 99% of the probability density 2_; I cf |2 in ®, can be attributed
to a subset of coefficients, i.e., {c!',i =1, 2, - -+, n}, where n is much smaller than
N. In the first step of our diagonalization procedure, a smaller n X n hamiltonian
submatrix H" is diagonalized fully using any standarized code, which leads to an
approximate state wave function

o) = > ak (67)

1=1
corresponding to an approximate energy eigenvalue es‘o). Second, we replace the
basis set {¢;} by a new basis set {w;}

Qz(O) ,221,2,,71,
w; = (68)
Yv; ;1=n+1,n+2,---,N.

The new N X N real symmetric hamiltonian matrix, i.e., H; =< w; | H | w; >, is
given explicitly by s

( 5 (0) - F 3

ijej ,z&3—1,2,~--,n

Hitj:< 21’:=1 a';;:Hk]' ;'i=1,2,---,n&j-—-n+1,n+2,~-,.N (69)

H;; 1&j=n+1,n+2,---,N.

\
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Third, we express the state wave function corresponding to an energy eigenvalue ¢,
in terms of the new basis set {w;}, or

N
q)” = Z b:‘ Wy s (70)
1=1
where the coefficients b satisfy the algebraic equation
N
ZH};bﬁ-‘:e,‘bZ; k=1,2,---,N& p=1,2,---,n. (71)
?

The coefficient b! and the energy eigenvalue €, can also be expressed explicitly by
the equations

SNz Hi b5

b = S =12, (72)
and
N
e, = bl HL b, (73)
4]
respectively.

Our next step is to evaluate the coefficients b}’ and the energy eigenvalue ¢, using
Egs. (72-73) iteratively. We start by setting €, = ef‘o), and

Ok k=1,2,---,n
bl = (74)

Ht
Gu—,j’fik sk=n+1,n+2,---,N.
After this set of coefficients {b;; k = 1,2,---, N} is normalized to unity, a new energy

eigenvalue ¢, is estimated using Eq. (73). We then proceed to calculate a complete
set of new coefficients {b};k = 1,2,---, N} using Eq. (72). This set of coefficients is
normalized to unity again before the iterative procedure is repeated until the energy
eigenvalue ¢, and its corresponding eigenvector {bh;k =1,2,---,N} are converged.
Finally, for each ¢,, a simple transformation

E’l:=1 a‘:'cbll: ;7’.:1’2,'”)"'
b = (75)
b t=n+1n+2,---,N ©

leads to a set of coefficients {c!; i = 1, 2, ---, N}, which forms the state wave
function ®, given by Eq. (66). :
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3.3.2. Resonant energy and width

The resonant energy E, and width I' are determined from the energy variation of
the calculated scattering phase shifts 6,(Ex) using the procedure outlined in Section
3.1. Numerically, we first calculate a set of estimated 6; (E)) by taking the difference
between the calculated §,(E)) and a set of §;(E,,T; E) calculated from Eq. (55)
with a pair of estimated E, and I'. This set of 6}(E}) is, in turn, used to determine
the coefficients {a;} in Eq. (54) by using a least square fit procedure. Second, with
the fitted expansion coefficients {a;}, we proceed to calculate a set of new 8] (E}).
The difference between this set of new 6;(Ej) and the original set of total phase
shifts 6,(E)) leads to a set of estimated 6; (E}), or

tmazx

fo(Ex) = 6e(Ex) — - aiE". (76)
1=0
Finally, this set of new f,(E}) (or, §;) are used to calculate a pair of new E, and T,
i.e., we interpolate the resonant energy E, by using the simple relation

fi(E,) = /2, (77)

and we derive the width I' by taking the average of two estimated values I'_ and
I';, which are interpolated by using the relations

fZ(Er ~ %‘) o 71'/4

f(E, + ) =3n/4

at energies on both side of the resonance. This entire procedure is repeated itera-
tively until the estimated E, and I' are both converged. A close agreement between
I'_ and T', also assures the accuracy of the calculated E, and T'.

(78)

The resonant energy E, and width T’ can also be determined from the energy
variation of the probability density

o B) = X | Ch(ns, ve) I (79)

corresponding to the singly excited nst ionization channel [28]. At the resonant en-
ergy E,, the contribution to ®4 from all closed channels should be at its maximum,
i.e., E, can be identified directly as the energy at which the probability density of
the ionization channel nsf is at its minimum value. The probability density pp.e is
also related to the energy dependent amplitude A at large r by

puelB) = < Eult) | €ulr) > ~ 24" (80)

The total energy E, or the outgoing electron energy ¢, varies as we change the radius
R slightly in the CIC calculation. Since R is approximately a constant and is also
substantially greater than the R-variation AR required to cover the resonance,
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p...(E) is approximately proportional to A?. This relation, together with Eq. (61),
which shows that the photoionization cross section o is inversely proportional to AZ,
suggest that o is inversely proportional to p_,,(E) near the resonance. As p_,(E)
approaches its minimum value at E,, 0 — Oma; and as E moves away from E,,
o decreases. Eventually, o is reduced to half of 0., When p_,,(E) is doubled at
E, + L, where T is the full width at half maximum (i.e., FWHM). As a result,
the positions and the widths of an entire series of doubly excited resonances can
be estimated from the energy variation of the probability density of the ionization
channel.

3.3.3. Eztended B-spline-based CI procedure

To improve the accuracy of the theoretical E, and T', an even larger number
of configuration series representing more £¢' combinations are required in the CIC
calculation. In particular, if the widths are to be determined from the energy
variation of the phase shifts, the B spline set typically requires a size of n > 120
at R ~ 120aq, for a four- to five-digit convergence in phase shifts. Computationally,
this represents a prohibitively extensive numerical effort, even with the help of the
diagonalization procedure outlined in section 3.3.1. To reduce the size of the basis
set, we have developed a two-step extended B-spline-based CI procedure [28].

First, a zeroth order CIC calcualtion is performed by including only a limited
number of dominating configuration series in a basis set, which is constructed from
B spline sets of n greater than 120. In addition, we carry out a similar zeroth or-
der CI calculation with the same configuration series combination, which employs
B spline sets of significantly smaller n ranging from 30 to 50. In our second step, a
substantially larger number of configurations series of various allowed £¢' combina-
tions is included in calculating E, and I' from the energy variation of the probability
density. We are able to limit the total number of configurations of the extended
basis set at a manageable level (e.g., approximately 3,000) by using the B spline
sets with the same smaller n employed in the zeroth order calculation. The change
in E, and T' due to the additional configuration series is estimated by comparing
the zeroth order E, and T’ with the ones from the extended calculation, both using
the same B spline set of smaller n. By adding the change in E, and T to the zeroth
order results using B spline sets of larger n, we finally obtain our best estimated
values for E, and I'. The maximum estimated uncertainty, in terms of the momen-
tum k of the ionizaed electron, is approximately %, which amounts to 2-5% for

two-electron atoms [28].

4. Applications

Photoionization spectrum dominated by doubly excited resonances for a two-
electron or a divalent atom represents perhaps one of the most direct and unam-
biguous atomic processes for a detailed quantitative study of the many-electron
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interaction in atomic transitions. One of the best known doubly excited photoion-
ization structures is the He sp22* 1P resonance, which was first observed in detail
by Madden and Codling [29] in He ground state photoabsorption spectrum and
later classified by Cooper, Fano, and Prats [30]. Theoretically, the photionization
structure of an tsolated resonance located at resonant energy E, is best described by
the Fano formula [31] in terms of a set of resonant parameters, which includes the
resonant width I', the asymmetry parameter ¢, and the nonresonant background
cross section 0,. The peak cross section oz, located at Enq, = E, + 3(I'/q) ac-
cording to Fano formula, equals 0;(1 + ¢*). Also, the cross section is expected to
reach a zero at an energy E,;, = E, — %(I‘q). Physically, the resonant profile,
which is characterized by the asymmetry parameter ¢, measures qualitatively the
interference between transitions from an initial state to the bound and continuum
components of the final state wave function. If the contribution from the transition
to the bound component is very small in comparison with the transition to the
continuum background, ¢ is very small and a zero cross section is expected either
at or near E,. For an intermediate g value, the resonant profile is generally asym-
metric due to a comparable contribution from transitions to bound and continuum
components of the final state wave function. On the other hand, if the transition
is dominated by the contribution from the transition to the bound component of
the state wave function, the ¢ value is large and a more symmetric photoionization
structure is expected. As a result, the ¢ parameter, or equivalently, the resonant
profile corresponding to a specific doubly excited resonance, can and often vary
significantly for transitions originated from different initial states.

In constrast, the resonant width I', which measures the interaction strength be-
tween the bound and continuum components of the state wave function of a doubly
excited autoionization state, is independent of the transition process. Experimen-
tally, the width of a doubly excited autoionization state can be determined by the
resonant structures originated from any initial states. Most of the existing mea-
surements are limited to the photoabsorption spectra from the ground state, which
are almost always strongly asymmetric due to the simultaneous change of electronic
orbitals of two outer electrons in a double excitation process. For a series of broad
resonances with small to intermediate ¢ values, the standard theoretical interpre-
tations [31,32| for an isolated resonance become less effective, especially when the
broad resonance is also closely situated next to a second overlapping doubly excited
series [33,34]. An accurate experimental determination of I' is often difficult. For
a narrow resonance, the width measurement could also be hampered by the lack of
adequate energy resolution. In fact, for a two-electron atom, the resonant widths
are in general more readily available from the theoretical calculations than from the
experimental measuremnets.

In this section, the quantitative accuracy of the CIC method is first examined
in terms of its applications to the photoionization of two-electron atoms from its
ground and bound excited states. Both nonresonant and resonant absolute pho-
toionization cross sections will be presented. Our theoretical results are compared
with other available theoretical and experimental results. In the second part of this
section, we present the extension of the CIC calculation to the single- and multipho-
ton ionization of alkaline earth atoms. Again, our theoretical results are compared
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with other existing theoretical and experimental results.

4.1. Two-electron Atoms

The quantitative accuracy of the state wave function can be measured directly
by the calculated scattering phase shift. The effect due to the electron-electron
correlation to the state wave function can also be estimated by the change in phase
shift as the size of the CI basis set increases. Fig. 2 presents the variaiton of
the nonresonant e-Het 13 P° scattering phase shifts as the basis set increases from a
single 1sp configuration series to a total of 89 series. The phase shifts from the single
ionization channel calculation, represented by the solid curves labeled as 1sp series
only, are seen to differ significantly from our final results. The phase shift corrections
due to the addition of 2sp, 2ps, and 2pd series to the 1sp series, account for about
half of the total phase shift difference. Our calculated phase shifts, including only
the 1sp, 2sp, 2ps, and 2pd series in the basis set, agree very well with the 1s2s2p
close-coupling results of Norcross [36]. Between 30%-40% and approximately 25% of
the phase shift difference can be attributed to the npd-type of configuration series for
the 'P and 3P continua, respectively. Our converged phase shifts are in excellent
agreement with the 20-state close-coupling results by Oza [37|. Our theoretical
phase shifts at zero energy also approach the expected values mu (where p is the
quantum defect), which equal -0.038 and 0.214 for the P and 3P series, respectively.
All two-electron configuration functions included in the basis set of the nonresonant
photoionization calculations are of the bound-bound or bound-continuum type, i.e.,
each of the two-electron basis functions in the CIC calculation consists at least
one negative energy single-particle orbital function. The contribution from the
continuum-continuum type of two-electron functions to the scattering phase shift
in nonresonant region is negligible. Our theoretical nonresonant scattering phase
shifts for the e-H scattering are also in excellent agreement with other earlier and
more elaborate calculations (see, e.g., Fig. 2 in Ref. [6]).
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: e - He* 1P Scattering Phase Shift ] [ o - Ho* 3P Scattering Phase Shift |
{ — Prosent (Ref, 35) [ ]
-0.03 | x  Oza (Ref. 37) 3

-0.05 | 4 series (A) + all npd

4 serles (A) + all npd

A (1sp+28p+2ps+2pd)
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e ——4 020
A (1sp+2sp+2ps+2pd)
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Figure 2. Variation of nonresonant e - Het 1P scattering phase shifts as func-
tions of photoelectron energy.
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Fig. 3 presents the photoionization cross sections below the resonance structure
for H-. Our calculated photodetachment cross sections from the H™ ground state
agree very well with some of the most accurate earlier theoretical calculations [2,38-
40]. A simple model calculation by Crance and Aymar [41] (not shown) has led to
cross sections which are significantly smaller at low energy side but too large on
higher energies compared with most of the more elaborate theories. In contrast,
more recent calculation, using the hyperspherical coordinates method [42], yields
cross sections in the length form which are slightly higher near the peak region
and slightly lower at higher energy than other theoretical results. Only the dipole-
length results from the present calculation are plotted. The agreement bewteen
our dipole-velocity and dipole-length results is about 1-2% or better for the entire
energy range. Similarly, our calculated nonresonant photoionization cross sections
from the ground state of He agree very well with the experimental data compiled
recently by Samson [43], which are accurate to 1-2% (see, e.g., Ref. [6]).
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5 + Broad & Reinhardt (Ref. 2)
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o 2 A  Park et al (Ref. 42) E
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Photoelectron energy ( Ry )

Figure 3. The photodetachment cross sections below the resonance structure
for H™.

The CIC procedure has also been applied to the nonresonant photoionization of
He from 1s2s 13S metastable states of He. For the 1s2s 1S® — 1P° photoionization,
most of the theoretical cross sections, including the present results and those by
Burgess and Seaton [44], Jacobs [45], and Dalgarno and co-workers [46], are all in
close agreement with each other and they also agree well with the observed data
near the ionization threshold [47,35]. Our theoretical photoionization cross sections
at selected photoelectron energies are compared in detail in Table I with the close-
coupling results of Jacobs [45] and Norcross [36]. At energies immediately next
to the threshold, our theoretical results differ noticeably from the close-coupling
calculation by Norcross [36], which employed an essentially uncorrelated initial state
wave function. For the 1s2s 8¢ — 3P° photoionization, our theoretical results also
agree well with the existing theoretical results [44-46]. Similar to the earlier results
of Burgess and Seaton [44], our near-threshold 1s2s 3¢ — *P° cross sections shown
in Fig. 4 appear to be slightly less than the observed values but clearly within the
experimental error bars. The ratio R between the 1s2s 'S and 1s2s 3S cross sections
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as a function of wavelength is also shown in Fig. 4. The ratio R appears to deviate
significantly from unity, especially at shorter wavelength. As a result, we could not
confirm the experimental observation that the 1s2s 1S cross section nearly equals
the 1s2s 3S cross section at energies close to the ionization threshold [47].

Table I. The nonresonant photoionization cross sections (in Mb) from He
1s2s 13S metastable states. The photoelectron energy ¢ is given in
Ry. Only length results are listed. (Values taken from [35].)

e (Ry) 1s2s 1S 1s2s 35

present Jacobs [45] Norcross [36] present Jacobs [45] Norcross [36]

0.01 8.798 8.753 9.350 5.345 4.751
0.05 7.258 7.128 7.083 4.804 4.332
0.10 5.803 5.671 5.413 4.188 4.042
0.15 4.722 4.473 3.654 3.537

0.20 3.902 3.821 3.904 3.199 3.157 3.509
0.25 3.268 3.233 2.812 2.796

0.30 2.770 2.768 2.485 2.480

0.40 2.047 2.068 2.122 1.968 1.970 1.993
0.60 1.225 1.233 1.258 1.302 1.311 1.268
0.80 0.795 0.794 0.858 0.913 0.926 0.918
1.00 0.546 0.543 0.490 0.671 0.685 0.629
1.20 0.390 0.388 0.319 0.512 0.527 0.500
1.40 0.285 0.284 0.277 0.404 0.418 0.449
1.60 0.212 0.211 0.219 0.328 0.342 0.372

Most of the earlier studies on the He photoabsorption spectra in the reso-
nant region are limited to the doubly excited structures dominated by the broader
sp2n* 1P resonances. Only very recently, Domke, Remmers, and Kaindl [1] have
successfully resolved in a synchrotron radiation experiment the narrow (sp,2n”)
and (2pnd) 'P° series, which are separated by energy differences ranging from
a maximum of 16.4+0.4 meV for the 47 /3d pair to an estimated 4+2 meV for
the 77 /6d pair. Their reported energy separations between the neighboring 2pnd
and sp,2(n+1)~ resonances are determined by fitting the measured photoionization
spectra to a standard Fano formula [31] for the sp,2(n+1)~ lines and a near sym-
metric monochromator function corresponding to a weighted sum of a Gaussian
and a Lorentzian profile for the 2pnd lines. In addition to the early theoretical
study by Burke and McVicar [23] using a four-channel close-coupling calculation
over two decades ago, the (2pnd) and (sp,2n~) 'P° series have been studied exten-
sively in recent years, including a nine-channel coupled-equation calculation within
the framework of many-body perturbation theory (MBPT) by Salomonson, Carter,
and Kelly [48], a L*-based R-matrix method by Gersbacher and Broad [49], and a
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STO-based L2-basis method by Sdnchez and Martin [4]. These two relatively narrow
1Po series have also been studied qualitatively in other recent theoretical works, in-
cluding the L?-basis calculation by Moccia and Spizzo [3], the variational R-matrix
calculation by Hamacher and Hinze [51], and the spline-based multiconfiguration
Hartree-Fock (MCHF) calculation by Froese Fischer and Idrees [5].
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Figure 4. The near-threshold photoionization cross sections from He 1s2s 3S
metastable state and the ratio R between the 1s2s !S and 1s2s 3S
photoionization cross sections.

Fig. 5 presents our calculated photoionization profiles in the vicinity of the
(sp,237), (2p3d), and (sp,24~) 'P° resonances. The theoretical energies from our
calculation have been shifted to lower energy by 3 meV for all three resonances to
accommodate a direct comparison with the observed spectra. The observed spectra
are normalized to the theoretical results following a procedure detailed in Ref. [7].
The calculated and the observed structure profiles appear to agree well. A hint of
sharp drop to a minimum in cross section is seen on the high energy side of the
sp,2n~ resonances. With an energy resolution of 4 meV, it is not unexpected that
the sharp dip in cross section (with a “width” less than 2 meV) next to the 2p3d
resonance is not observed experimentally. Similarly, the top portion of the resonance
structures are also absent in the observed profiles when their widths become less
than 2 meV. Except for minor quantitative details, the calculations by Salomonson,

Carter, and Kelly [48] and Sénchez and Martin [4] have also suggested asymmetric
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Table II.

The resonance energies E, of selected He (sp,2n—) and (2pnd) ! P°
resonances and their energy separations A below the N=2 threshold.
The numbers in parentheses are experimental errors in units of the
last digits. The energy separation given by a[-b] = ax10~® eV. The
energy in eV is converted using the factor employed in Ref. [1], i.e.,
1 Ry = 13.60503 eV and IP,, = 79.0078 eV.

State Observed [1] Present Oza [37] Ho [52] Sanchez & Martin [50]
— E,(eV) —
3” 62.7580(2) 62.7611 62.7611 62.7611 62.757
2p3d 64.1189(2) 64.1217 64.1211 64.118
4~ 64.1353(2) 64.1377 64.1379 64.1374 64.134
2p4d 64.6485(4) 64.6514 64.6512 64.648
5~ 64.6574(2) 64.6598 64.6599 64.6598 64.656
— A(eV) —
37 /4" 1.3773(4) 1.3766 1.3768 1.3763 1.377
4~ /5 0.5221(4 0.5221 0.5220 0.5224 0.522
3d/4d 0.5296(6 0.5297 0.5301 0.530
4-/3d 16.4(4)[-3 16.0[-3] 16.3[-3] 16.0[-3]
57 /4d 8.9(6) [-3] 8.4[-3] 8.6[-3] 8.0[-3]
1.5 [ryvvrrrersy TrTrrrrrrrr Trrrr?y T ) 1.32 o TT T T TTIr T T TTT T
' 246 Mb |« ] 3 91.1 Mb x 11.67 Mb
1 x x ' E
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Figure 5. Comparison of the calculated and the observed photoionization cross

sections near the doubly excited (sp,23~), (2p3d), and (sp,24~) 'P
resonances of He atom below the N=2 threshold.
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resonance profile for the 2pnd series with a significantly larger negative ¢ value than
the one for the sp,2n~ series. Together with our result, we conclude that, in contrast
to the observed spectra, a higher peak photoionization cross section o,,.; is expected
for the 2pnd resonances than that for the sp,2n™ resonances. In Table II, we compare
the observed resonant energies and the energy separations for the He (2pnd) and
(sp,2n~) 'P series with the results from the present calculation and a few other
recent theoretical results. Some of the calculated resonant energies are modified to
account for the use of different energy-conversion factors. The overall agreement
between experiment and theory is excellent. The numerical resonant widths and
the peak photoionization cross sections 0y,,, from ground state to selected (sp,2n*),
(sp,2n~), and (2pnd) 'P° series belown the He* N=2 threshold are given in Ref.
7].
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Figure 6. Photoionization spectra from He 1s2s %S metastable states to 3P
doubly excited resonances.

In contrast to the strongly asymmetric ground state spectrum, the resonant
profiles are more symmetric in general for bound excited states spectra with peak
cross sections that are several orders of magnitude greater than the cross sections
from the ground state, such as the He 1s2s 1S — sp22* 'P reported in Ref. [6].
This suggests that, experimentally, both I' and E, of a doubly excited resonance
can be determined, perhaps less ambiguously, from photoionization of bound excited
states. Recent development in high-resolution monochromator operating with high
synchrotron radiation intensity [1] may have opened up the experimental possibility
in resonant region, at least for those resonances with high peak cross sections, if
high density bound excited He atoms can be generated. In Fig. 6 we present
our calculated photoionization spectra from He 1s2s S metastable states to the
resonant region dominated by the P° doubly excited resonances. Similar to the
1P photoionization spectra from the 1s? 'S ground state [1,7], the sp,2(n+1)~ and
2pnd !P resonances are separated by approximately 16 meV and 9 meV for the n=3
and 4 pairs, respectively. Except for the sp,2n* P series, the peak cross sections
Omaz for the narrower sp,2n~ and 2pnd P states are significantly larger than the
nonresonant photoionization cross sections.
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The peak cross sections op,., for selected transitions are listed in Table II of
Ref. [35]. For the 1s2s 'S — sp,22% !P transition, our theoretical oz = 519.3 Mb
is in agreement with the calculated value of 541 Mb by Dalgarno and co-workers
[46], but differ noticeably from the close-coupling results of 436 Mb and 384 Mb by
Norcross [36] and Jacobs [45], respectively. Since oy, is inversely proportional to
T (see, e.g., Eq. (46) of Ref. [53]), this disagreement may be partially attributed to
the approximately 15% overestimation in width from the close-coupling calculations
in comparison with most of the existing theoretical values shown in Table III of
Ref. [35]. For the 1s2s 38 — sp,22* *P transition, our theoretical opa; = 2554
Mb is greater than the results from all three previous calculations [36,45,46]|. This
discrepancy can be attributed entirely to the difference in the calculated resonant
widths (see, e.g., Table IV of Ref. [35]). In fact, the 0,4, Would range from 2400 to
2500 Mb for these three calculations if adjustment due to the difference in resonant
width is taken into account.

For a doubly excited (nf;vf,) 25*1L autoionization state embedded in a singly
tonized (1sef) 25*1L continuum background corresponding to an ionized £ electron
of energy ¢, the resonant width T' is qualitatively related to the Coulomb interaction
between the bound and continuum components of the state wave function, i.e., it
is approximately proportional to

1
|< (ntive,) 1L | — | (1se€) 251L >|2 . (81)

Theoretically, the v-dependence of the resonant widths I' of a series of (n¢;v¢,) 25+1L
doubly excited resonances is approximately given by the v-dependence of the one-
electron radial function of the v, orbit. In fact, if the range of the effective interac-
tion ro is small in comparison with the effective principal quantum number v, i.e.,
for a small ro/v, it can be shown that T' is given qualitatively by [54]

Z:l p2i+l’ (82)

where ¢; are constants independent of v. As v increases along the autoionization
series, I' should approach a v~3-dependence. This v~3-dependence is illustrated in
Fig. 7 for the dominating odd-parity He (sp,2n*) P series. Specifically, our cal-
culated resonant widths, expressed in terms of the product of I' and v® as functions
of effective principal quantum number v, are compared with the results of a few
of the earlier and more recent theoretical calculations. For the 1P series, our cal-
culation agrees very well with the complex-coordinate rotational calculation by Ho
[52]. The agreement with the 20-state close-coupling calculation by Oza [37] is also
very good, except for the small but noticeable drop for the (sp,24%) 1P state in the
close-coupling result. The results of the earlier truncated-diagonalization method
[12] and the 3-state close-coupling calculation [23] appear to diviate from the results
of the more elaborate recent calculations. For the 3P series, the overall agreement
between our calculation and the complex-coordinate rotational calculation by Ho
[55] and the 20-state close-coupling calculation by Oza [37] is excellent. Detailed
tabulations of the resonant energies and widths are given elsewhere [35].
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Figure 7. The variation of the product of resonant width I' and v® as function
of the effective principal quantum number v for the He 2(0,1)*n ! P
and 2(1,0)*n *P autoionization series. The solid curve represents a
least square fit of the present results to Eq. (82).

4.2. Divalent Atoms

In Fig. 8, our calculated photoionization cross sections of neutral Mg from its
ground state [8] are compared with the earlier theoretical results by Moccia and
Spizzo [3] and the most recent absolute photoabsorption cross sections measured
by Yih et al [56]. Our results are also consistent with the normalized experimental
data by Preses et al [57]. In addition, our results are in close agreement with
other earlier theoretical results, including the velocity results by Bates and Altick
[24] and the MCHF results by Froese Fischer and Saha [5], although all the above
mentioned theoretical results are noticeably less than the results from the earlier
version of the R-matrix method by O’Mahony and Greene [58] at energy near the
ionization threshold. The CIC procedure has also been applied to photoionization
from the bound excited states of Mg [8]. In Fig. 9, we present our calculated cross
sections for the direct photoionization from the 3s3p!P bound excited state of Mg
at energies close to the 3p? S autoionization state. Our theoretical result is in
excellent agreement with the observed data compiled from an earlier two-color two-
step experiment [59]. To present a direct comparison, the experimental results are
normalized against the theoretical cross sections at the peak value. Our calculated
length and velocity results agree to better than 5%. Only the length results are

shown in Fig. 9.

In Fig. 10, we present the results of our photoionization calculations for the
Be-like C** [60]. Our calculation has shown that in contrast to the prominent
asymmetric structure in the vicinity of the 2pnd !P resonance, the cross section
exhibits a near zero dip close to the 2pns P autoionization state, which corresponds
to a ¢ ~ 0 type of Fano profile. On the other hand, for transitions from a 2sns 'S
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bound excited state, the cross section close to the 2pns 'P resonance is represented
by a nearly symmetric profile, which corresponds to a large q value resonance struc-
ture due to a direct 2s — 2p transition. Similar to the earlier examples, once again,
the spectra shown in Fig. 10 has led us to conclude that, experimentally, both
the resonant width and energy of a doubly excited autoionization state may be
determined less ambiguously from photoionization of bound excited states.

Fig. 11 presents our theoretical generalized cross sections in 107%° cm*-sec from
the ground state of Mg for linearly polarized one-color two-photon processes (8],
i.e.,

Mg(35s*'S) + 2hw — Mg**(3pnl'Sor'D)
— Mg*(3s28) + €. (83)

The results of our Mg two-photon ionization calculation are in close agreement with
an earlier L?-basis calculation by Moccia and Spizzo [3]. Our calculation has shown
that the two-photon ionization spectrum leading to the 'S continuum is dominated
by the strong resonant structure due to the 3s3p 'P intermediate state and the
3pnp S autoionization series. As for the !D continuum, only a hint of the 3pnp D
autoionization series is seen, in contrast to the narrow but visible 3pnf D series.
The 3s3p P intermediate resonant structure remains strong. A few of the final
state autoionization structures shown in Fig. 11, including 3p4p 1S, 3p5p 'S and
3p4f 'D states, have been observed recently by Shao and Charalambidis at Crete
[61]. The fact that the 3pnp 'D series is not observed experimentally is consistent
with the absence of prominent structure for the 3pnp D series in our calculated
spectrum. A total of 12 configuration series are included in our calculation.
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Figure 11. The calculated generalized cross sections for two-photon ionization
leading to 1S and !D continua from the ground state of Mg. (Data
taken from [8].)

In Fig. 12, we present the generalized cross sections for linearly polarized one-
color three-photon ionization of Mg from ground state that lead directly to the !P
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and 'F continua. For the three-photon ionization leading to the !P continuum, the
prominent doubly excited 3pns 'P resonant states, which dominate the one-photon
process, are completely overwhelmed by the 3sns 'S and 3snd !D intermediate reso-
nant structures. In fact, the broad 3p4s P structure seen in the single photoioniza-
tion spectrum (see, e.g., Fig. 8) is reduced to a slightly broaden shoulder at the low
energy side of the 3s5s 'S intermediate resonance in the three-photon spectrum. For
the three-photon ionization leading to the 'F continuum, the spectrum is dominated
by the resonant structures due to the 3snd D intermediate bound excited states.
The strongly correlated 3p3d 'F doubly excited autoionization states [62] is less
prominent but remains visible on the low energy side of the 3s6d 'D intermediate
resonance. Again, a total of 12 configuration series is included in our state wave
functions calculation for all bound and continuum states. The length and velocity
results are nearly indistinguishable on the logarithmic plot.
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Figure 12. The calculated generalized cross sections for three-photon ionization
leading to ! P and 'F continua from the ground state of Mg. (Data
taken from (8].)

Our theoretical calculation has clearly shown that as the number of photon in-
creases, the energy spectrum of a single-color multiphoton process does not necessar-
ily reveal the atomic structure effects which dominate the final state multi-electron
interactions in the continuum, in spite of its ability to reach directly the higher-L
states of both odd and even parity. In fact, a multi-color multi-step process may
turn out to be a more efficient physical mechanism in the study of multi-electron
interactions in the continuum if it is capable of yielding detail photoionization data
for transition from a highly correlated bound excited state to a strongly correlated
autoionization state.

The applications of the CIC method to two-electron and divalent atoms pre-
sented in this section have successfully demonstrated the effectiveness of this ap-
proach in leading to accurate theoretical spectra in a single continuum. Extensions
to spectra in multi-continua and more complicated atoms are currently in progress.
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