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The Exact Diagonalization method is a powerful numerical tool to study Quan-
tum Many Body systems on finite clusters. In particular, using this technique one
can accurately calculate energy and momentum dependent dynamic correlation func-
tions which are observable in scattering experiments, such as Neutron Scattering,
Raman Scattering, and Photoemission Spectroscopy which measures the spectral
function of the system. Here we give an outline of the Lanczos method with special
emphasis on the evaluation of dynamical quantities.

In this thesis, we apply this method to two-dimensional models of strongly corre-
lated electrons which are believed to describe the physics of the recently discovered
cuprate high-T. compounds. We show that simple models of strongly correlated elec-
trons, such as the Hubbard and the t-J model, can account for some normal state
properties of these materials. In particular, the occurance of photoemission bands
which are introduced by short-range antiferromagnetic correlations is discussed.

The precursor materials of the cuprate superconducters are antiferromagnets.

Here, we address the properties of antiferromagnets as they evolve from an insulating



to a metallic phase upon doping. We focus on the shape of the Fermi surface at
small hole doping and on the influence of long-range Coulomb interactions on the
occurance of superconducting and charge density wave phases.

We also investigate systems in one spatial dimension where mechanisms similar
to the ones in higher dimensions can be studied on larger clusters. However, there
are some significant dimension dependent differences, e.g. in contrast to the two-
dimensional case, one-dimensional antiferromagnets exhibit a gapped spectrum if
the participating spins have integer value. We discuss the physics of these ‘Haldane’
chains. The calculated spectra for these materials are in excellent agreement with
recent Neutron Scattering Experiments.

The effect of random exchange interaction in quantum antiferromagnets is also
discussed. We show that such interactions do not necessarily induce an exponential
decay in the spin correlations. Also, we argue that random exchange interactions
can be induced by phononic disorder and might be responsible for the lineshape of
Raman spectra observed in the cuprates. Our calculated Raman spectra are in good

agreement with recent experiments on various cuprate precursors.
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ABSTRACT

The Exact Diagonalization method is a powerful numerical tool to study Quan-
tum Many Body systems on finite clusters. In particular, using this technique one
can accurately calculate energy and momentum dependent dynamic correlation func-
tions which are observable in scattering experiments, such as Neutron Scattering,
Raman Scattering, and Photoemission Spectroscopy which measures the spectral
function of the system. Here we give an outline of the Lanczos method with special
emphasis on the evaluation of dynamical quantities.

In this thesis, we apply this method to two-dimensional models of strongly corre-
lated electrons which are believed to describe the physics of the recently discovered
cuprate high-T. compounds. We show that simple models of strongly correlated elec-
trons, such as the Hubbard and the t-J model, can account for some normal state
properties of these materials. In particular, the occurance of photoemission bands
which are introduced by short-range antiferromagnetic correlations is discussed.

The precursor materials of the cuprate superconducters are antiferromagnets.
Here, we address the properties of antiferromagnets as they evolve from an insulating
to a metallic phase upon doping. We focus on the shape of the Fermi surface at
small hole doping and on the influence of long-range Coulomb interactions on the
occurance of superconducting and charge density wave phases.

We also investigate systems in one spatial dimension where mechanisms similar

to the ones in higher dimensions can be studied on larger clusters. However, there

xi1



are some significant dimension dependent differences, e.g. in contrast to the two-
dimensional case, one-dimensional antiferromagnets exhibit a gapped spectrum if
the participating spins have integer value. We discuss the physics of these ‘Haldane’
chains. The calculated spectra for these materials are in excellent agreement with
recent Neutron Scattering Experiments.

The effect of random exchange interaction in quantum antiferromagnets is also
discussed. We show that such interactions do not necessarily induce an exponential
decay in the spin correlations. Also, we argue that random exchange interactions
can be induced by phononic disorder and might be responsible for the lineshape of
Raman spectra observed in the cuprates. Our calculated Raman spectra are in good

agreement with recent experiments on various cuprate precursors.
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CHAPTER 1

INTRODUCTION

In 1986, the discovery of a new class of perovskite materials which undergo
a superconducting phase transition at a temperature around 30K initiated a re-
newed effort to understand the physics of strongly correlated electronic systems.[1]
Since the generation of the first compound Lay_Ba,CuQO,4 (where ‘x’ indicates the
variable number of Ba dopants replacing La), many similar materials have been
synthesized.[2] The compound HgBa;Ca;Cu30s,s has the currently known high-
est critical temperature, T., of about 133K. Since the critical temperature below
which these materials become superconducting is between one and two orders of
magnitude larger than for previously known superconductors (e.g. Pb), they are
commonly referred to as high-T. superconductors. There has been much progress in
characterizing the thermodynamic behavior (i.e. magnetic susceptibility and heat
capacity) and some of the microscopic properties (i.e. using Neutron Scattering and
Photoemission spectroscopy) of these compounds.[3] However, there has not been
much general agreement on the microscopic mechanisms which ultimately lead to
the formation of a superconducting condensate in these compounds.

Contrary to previously known superconductors, the high-T. superconductors
show strong magnetic correlations throughout their phase diagram.[4] The presence

of magnetic instabilities is indicative of strong Coulomb interactions between the
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conduction-band electrons. A generic phase diagram for these materials is shown in

Fig. (1.1).[5]

Metallic «—— Insulating —— Metallic
300 T T | T 1T | T 1T T 1T | L L | L | L
| Electron-doped Hole-doped i
" Nd,_,GCe,CuO, Lay,Sr,CuO,,
< 200 [~ ; -
o | : I
=2 " P-type P-type i N-type|
g [ F
5 ool -
=100~ " AFM L
- oo 1 i i
. " sa i _

0 o I

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Concentration x in an_XMXCuO4_y

Figure 1.1: Phase diagram for an electron-doped and a hole-doped high-T. super-
conductor.[5] Antiferromagnetic (AFM), superconducting (SC), and spin-glass (SG)
phases are shown. The areas marked “p-type” (+) and “n-type” (-) correspond to
positive and negative charge carriers in the material as determined by Hall measure-
ments.

There are two kinds of cuprate compounds which are commonly distinguished
with regard to what kind of charge carriers they can be doped with, namely elec-
trons (i.e. Ndy_Ce,CuO,4_y) or holes (i.e. Lay_SryCuO4). The undoped parent
compounds are in an antiferromagnetically ordered phase. Upon introduction of
charge carriers into the system the long-range antiferromagnetism is destroyed, e.g.
typically the magnetically ordered phase vanishes beyond a hole-doping level of
6, = 2%. For electron-doped materials, the antiferromagnetic phase typically per-

sists a little further up to electron-doping levels of 6. =~ 12%. However, short-range

antiferromagnetic fluctuations persist much further into the phase diagram as will
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be discussed below. A possible explanation for the asymmetry of the antiferromag-
netic phases in Fig. 1.1 is that in the hole-doped materials the dopant- holes go onto
the oxygen atoms, while in the electron-doped materials dopant-electrons tend to
occupy the copper sites (as will be discussed below in detail). It seems that the non-
magnetic regions in the material created by hole-doping are more extended than for
electron-doping, leading to an earlier break-down of the magnetically ordered phase.

Between 6, ~ 5% — 30% there exists a superconducting phase with a maximum
critical temperature around x~0.15 (optimal doping) in La;_,Sry,CuQO,. Similarily,
there is an optimum doping of 6. ~ 15% (x=0.15) for Nd;_Ce,CuO4_y. Both in
the hole and electron-doped phase diagrams, superconductivity occupies a relatively
small region compared to antiferromagnetism, and thus in theoretical studies it may
become important to isolate the proper energy scales of the pairing mechanism
responsible for superconductivity from those causing the bulk magnetic properties.
(In Lay_4 Sty CuOy4 an additional spin-glass phase around ¢, &~ 4% has been reported,
which extends over a very small region in the phase diagram.)

One of the most challenging problems posed by this new class of materials is that
because of their inherent strong electronic correlations it is not obvious that Landau
Fermi Liquid theory - which has been very successful in the context of metals - is
applicable here.[6] Fermi Liquid Theory makes predictions about thermodynamic
observables and transport properties which cannot be reconciled with experiments
on the high-T. compounds. Most significantly, a linear temperature dependence of
the normal state resistivity (in the vicinity of optimal doping) has been established
to be a universal property of these materials, while Fermi Liquid Theory predicts

p o< T?. This observation is also very different from p o a + 1'°, which is valid for



4

conventional superconductors and can be understood in terms of electron-phonon
scattering. Another puzzling experimental fact is that the Hall angle seems to
depend quadratically on temperature, i.e. Zﬁ o T2.[7]

In our studies, we will mainly be concerned with the dynamical properties of
materials whose physics 1s believed to be dominated by strongly correlated elec-
trons such as quantum magnets and superconductors in their normal state. For
this purpose, we study model Hamiltonians which are believed to capture the es-
sential physics of these systems. In the second part of this chapter, we discuss the
microscopic origin of these models. Typically, many degrees of freedom have to be
integrated out of the original problem to make it accessible to present day computer
capacities. The strongest common feature of all high-T. compounds is the presence
of CuO, planes. Thus, most models address solely these planes. However, inter-

plane interactions might be important in the formation of hole pairs and are subject

of much attention recently.

1.1 Strongly Correlated Electrons in Magnets and High-Temperature

Superconductors

In this section, we discuss the chemical structure of some quasi two-dimensional
cuprate superconductors and of a quasi one-dimensional spin-1 antiferromag-
net. Here, the dimensionality assigned to the materials corresponds to strong
anisotropies, e.g. the dominant exchange integral in the cuprates is found to lie
in 2D CuO; sheets common to all high-T. compounds, while the out-of-plane ex-
change constant is believed to be several orders of magnitude smaller. Similarily,

the exchange integrals for the spin-1 antiferromagnet NENP are highly anisotropic,
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1.e. they are negligible in all but one direction. Anisotropies of the magnitude found
in the cuprates are not present in conventional superconductors such as Nb or Pb.
It 1s remarkable that all high-T. compounds apparently have two features in

common :

e The dominant physical processes (charge transport, antiferromagnetic ex-
change ...) that participate in the formation of the superconducting condensate
are believed to be confined to the CuO, planes, while the out-of-plane atoms
(e.g. Ba, O, La, ...) serve only as charge reservoirs. Upon doping the insu-
lating parent compounds, the out-of-plane atoms provide charge carriers to
the CuQO, planes. However, some researchers believe that out-of-plane optical

phonon modes are also important for the occurance of superconductivity.

o In their undoped regime, the cuprates develop long-range antiferromagnetic
order. Upon doping, this order is rapidly destroyed. However, even without
strict long-range order, the spin correlation length can be large in the normal
and superconducting phases producing a local arrangement of magnetic mo-
ments that at short distances differs very little from that observed below the

Néel temperature in the insulating regime.

There also seems to be a correlation between the number of neighboring CuO,
planes and the optimal value for the critical temperature, e.g. T1,Cay;BayCu3z04g
which has a large T. of 125K, has three adjacent CuO; planes, while La; 5551 15CuOy4
with only one CuQ; layer has a T. of 39K. Also, although there is only little variation

among the cuprates with regard to the Cu-O bond length (within the planes), there



Material T.(K)
HgBa,;Cay;Cu30s.5 133
TIl,CasBasCus;04¢ 125
YBa,Cus0- 92
Bi1,S1,CaCuy04 89
La; 85510.15Cu0y4 39
Nd; 55Cep.15CuOy 24
RbCs,Csp 33

NbsGe 23.2

Nb 9.25

Pb 7.20

UPt; 0.54

1.9A have an increased T..[8]

it was established that the 2D Heisenberg model,

H:JHZSZ'-S]',

(4.5)

Table 1.1: Superconducting transition temperature for various compounds.|[3]

1s evidence that those compounds with a bond length slightly shorter than the typical

In their insulating phase, the cuprates (in particular La; g55115CuQO,4) are an
almost ideal realization of the 2D Heisenberg antiferromagnet.[9] In the early days

of high-T. research, this phase was subject to much discussion. After some effort,
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has gapless magnon excitations, and the quantum fluctuations associated with these
excitations are not strong enough to destroy long-range antiferromagnetic order at
T=0 in 2D.

The fact that antiferromagnetic order persists in the cuprates for finite tempera-
tures and small dopings can be understood in terms of the weak inter-plane coupling
J_. An estimated J_ ~ 107°J) is sufficient to establish the magnetically ordered
phase observed in the cuprates.[10]

A large number of compounds with the characteristic CuO; planes have been
synthesized. This is not too surprising since it is possible to modify the number of
planes per unit cell, the atoms separating the nearby planes, as well as the structure,
composition, and size of the charge reservoir, producing a huge number of combi-
nations. In the table above, taken from E. Dagotto’s recent review article,[3] we
present a very short list of the most widely studied compounds in this field, with
their critical temperatures T.. For comparison we also show the critical tempera-
ture of some conventional superconductors like Nb, Pb, and Nb3Ge. The latter had
the highest critical temperature known before 1986. The T.’s of a superconducting
heavy fermion material (UPt;) and a fullerene are also given.

In the remainder of this section, we discuss the structure and phase diagram of

some particular high-Tc compounds in more detail.

1.1.1 Lay_Sr.CuQOy,
Las_«Sr,CuQy is one of the earliest high-T. materials. In our notation, ‘x’ con-
trols the doping level when some of the La-ions in the parent compound La;CuQOy

are randomly replaced by ‘x’ Sr-ions per unit cell. The structure of this material is
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shown in Fig. 1.2. At intermediate doping levels, La,_(Sr,CuQ, crystalizes into the
body centered tetragonal lattice shown in this picture. However, at lower Sr con-
centrations there is a minor structural rearrangement which renders an orthorombic
distortion. This change in the lattice geometry is usually neglected in calculations,
but it might become important in the discussion of the symmetry of the supercon-

ducting order parameter.

Figure 1.2: Crystal structure of Lay_(SryCuQ,.[5]

The atomic configurations of the elements which go into this material are given
by : Cu: [Ar](3d)'(4s), La : [Xe](5d)(6s)?, O : [He](2s)*(2p)*, and Sr: [Kr](5s)>.
As can be seen from Fig. 1.2, the CuQO, planes are separated by two sheets of
LaO which serve as a charge reservoir for the planes as we will discuss below. The
distance between the CuO, planes is 6.64, and the distance between the LaO sheets
and the closest CuO, plane is 2.4A. Within the CuO, planes, the distance between

the Cu and the O is 1.94. As can be seen from the CuO; plane in the center of Fig.
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1.2, there are also ‘apical’ oxygens centered 2.4A above the Cu in the planes. Thus
each copper ion is surrounded by an octahedron of oxygen ions.

In the crystal it becomes important what ionization state the elements are in. In
the parent compound (La;CuQ,), Lanthanum is in the closed shell [Xe| configura-
tion, e.g. it loses two s-electrons and one d-electron to become La®*. The oxygens
gain two additional s-electrons and are thus in the O ionization state. Then, the
copper ions have to be in the Cu*" state to guaranty charge neutrality. Hence, the
copper loses its outer 4s-electron and one of the d'°-electrons. Since there are now
only 9 of the 10 levels in the copper 3d-shell filled, there is a net spin-1/2 per cop-
per ion. These spin-1/2 holes can super-exchange between the copper ions via the
electron-filled p-shells of the oxygen ions. This mechanism gives rise to the antifer-
romagnetic order which is observed in the cuprate parent compounds. It has been
shown that the parent compounds are well described by a 2D Heisenberg model
with nearest neighbor interactions, [9] e.g. Eq. 1.1 with J ~ 1450K. The small
residual interactions between the CuO, planes (J_ ~ 107°J)) lead to a finite Néel
temperature of about 300K (see Fig. 1.3).

Upon doping, the Lat ion is replaced by Sr**, Sr** being in the [Kr] configu-
ration. It is believed that the Sr dopants enter the material in a random manner.
Since Sr?* has one less hole than La®t , it pulls one electron out of the CuO; plane.
It turns out that the least bound electrons in the CuO; planes are in the oxygen
p-shell. Thus, effectively doping by Sr leads to a change of the ionization state of the
oxygens in the planes from O?~ to O~. As explained before, the antiferromagnetic
long-range order is destroyed rapidly by introducing holes into the planes, and the

system becomes metallic. For Sr-dopings between x ~ 0.05 and ~ 0.30, a supercon-
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Figure 1.3: Phase diagram of La,_,Sr,Cu0O,.[11]

ducting phase is found at low temperatures. The maximum value of T. is observed

at the “optimal” doping x ~ 0.15.

1.1.2 YBayCusO¢yx

Let us now discuss another high-T. material which has a structure more compli-
cated than La,_Sr,CuQO, because it has two adjacent CuQO, planes per unit cell.[12]
As mentioned above, there is a tendency in the cuprates that the maximum T,
increases monotonically with the number of adjacent Cu — O sheets per unit cell.
Indeed, YBay;Cu3O0¢,« has a critical temperature of 92 K which is more than twice
as high as the T. for Lay_SryCuQO4. A picture of the crystal structure for this
compound is shown in Fig. 1.4. The neighboring CuO, planes are 3.2A apart, while
the Cu-O bonds in the planes are still 1.94 long. Between the adjacent CuO, planes

there is an Y-ion which is believed not to affect the physical properties of the CuO,
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planes in any crucial way. However, the Y-ion might have the tendency to influence

holes in the planes via trapping Coulomb centers.

conduction
layer

9 CuO chains

charge
reservoir
layer

CuO
planes

Figure 1.4: Crystal structure of YBa;Cu30¢4.[13]

Each pair of neighboring CuO, planes in this compound is separated by a charge
reservoir containing barium, oxygen and copper atoms. An additional complication
in the structure of YBayCu30Og,« 1s introduced by the presence of Cu-O chains
parallel to the planes. However, as we will discuss below, the coppers on the chains
are in a different ionization state than the ones in the planes. Thus, most magnetic
and transport properties are not dramatically affected by the Cu-O chains. However,
some quantities like the optical conductivity are believed to be affected by the chains.

The atomic configurations of the elements which go into this material are given
by : Cu: [Ar](3d)'°(4s), Ba : [Xe](6s)?, O : [He](2s)*(2p)*, and Y : [K1](5s)?*(4d). In
the crystal, the yttriums lose 2 s-electrons and one d-electron and are thus in the

Y?* state. Similarily, the bariums are in Ba®", and the oxygens are in the O?~ state.
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However, there is a difference between the ionization state of the copper atoms in the
CuO; planes and those in the charge reservoir (which includes the Cu-O chains):
in the planes the coppers are in the Cu?" state as in Lay_,Sr,CuQO,, and hence
they have a magnetic moment (S=1/2) which leads to antiferromagnetism within
the planes with a Néel temperature of about 500/ . (Again, a small inter-plane
coupling J_ is responsible for the finite Néel temperature.) However, the coppers in
the charge reservoir are in the Cu®" state, and thus have no net magnetic moment.

YBa;Cu30644 can be doped by adding oxygens to the magnetically ordered
parent compound (x=0). The dopant oxygens are believed to become part of the
charge reservoir having an ionization state of O?~. Then, two electrons per dopant
oxygen are removed out of the planes, and hence oxygen doping is equivalent to
introducing holes into the planes. Antiferromagnetic order disappears at a doping
level of about x =~ 0.3, and a superconducting phase starts to develope immediately
thereafter. The optimal doping level with the highest T. for this compound is
reached at x ~ 0.92.

Recently, there has been a considerable effort in synthesizing materials with
multiple adjacent CuQO, layers, since apparently inter-layer coupling increases the
maximum T.. To this day, the highest confirmed critical temperature has been
seen in the 3-layer mercury compound HgBa;Ca;CusOsys. Another experimental
thumb-rule to increase T. for a given material is to apply pressure in order to bring
the CuO; layers closer together. In particular, by introducing additional ions with
a large radius into the charge reservoir (i.e. "applying chemical pressure”) T. can
be increased. However, there are natural limits to this procedure given by the

stochiometry and the stability of the crystal configuration.
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1.1.3 Ni(CyHgN;):NO,ClO,

In contrast to the cuprate materials discussed in the previous sections, the one-
dimensional molecular based compound Ni(C2HgN3);NO,ClO4 (NENP) , shown in
Fig. 1.5, consists of [Ni(CyHgN,)]** moieties bridged by [NO,]™ ions. There are
also [ClO4]” ions present which provide charge neutrality for the crystal. There
has been much interest in this compound and related materials because it exhibits
short-range antiferromagnetic order with a correlation length of roughly six times
the distance between Ni-ions (= 8.2954)[14] and a gap (of about 1.82 meV) at the

bottom of its spectrum, called the Haldane gap.

o
CHN A v’i

;.@ >'90c|o4
Oﬁ{ Noz{ O Ni

[N S

Figure 1.5: Crystal structure of Ni(C3HgN3)2NO,ClO,.[15]

NENP crystallizes into an orthorombic structure. In the solid, the Ni atom
(Ni: [Ar](3d)®(4s)?) shares its two outer 4s-electrons with the [ClO4]” and the
[NO3]~. In particular, the Ni*t ion forms a coordination bond with [NOy|~. Ni**

is in a 3d® configuration, and Hund’s rules provide that the two magnetic orbitals
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(e.g. dy2_y2 and ds,2_,2) are occupied by electrons of the same spin orientation (like
in the cuprates, the degeneracy among the 3d-orbitals is removed by crystal fields).
Hence, the Ni*t ion has a net spin S=1, and is in a A, triplet configuration.[16]
The superexchange between two neighboring Ni*" ions takes place via the highest
occupied molecular orbital of [NO;|™, e.g. via the antibonding 7*-orbital.[17] In the
next section, we will address the issue of super-exchange in more detail.

As we show in a later chapter, NENP can be well described by a Heisenberg
antiferromagnet in the presence of single-ion anisotropy ( which is typically an order
of magnitude smaller than the exchange integral) and an in-plane anisotropy (which
is typically two orders of magnitude smaller than the exchange integral). Hence, the

Hamiltonian for this system can be written as

H=J3Si-Siy + D3 (S0 + EX_[(5)" — (51)7), (1.2)

where J &~ 50K, D ~ 10K, and E ~ 1K can be determined by fitting Neutron scat-
tering data to theoretically calculated spectra for this model. Both anisotropies
which enter Eq. 1.2 are effects of a spin-orbit coupling ,AS - L, which enters the
Hamiltonian to lowest non-vanishing order in perturbation theory as A*A,,S*S”.
The degenerate orbital momentum levels of individual atoms in the solid (here

1=2) are split by crystal field effects, where the anisotropy tensor is given by

A, =Sr AL T AW | Ly [T)
pvo ¥

(Frr—Fr) , with T' labelling the irreducible representation of
/,Y/ ¥

the crystal point-group. [16]
There is also a finite but small inter-chain coupling J'/J ~ 10~* which potentially
could give rise to 3D magnetic ordering as observed in the spin-1 compound CsNiCl;

which has J'/J a2 107% and 3D long-range order below a Néel temperature of 4.85K.
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However, for NENP the ratio J'/J is two orders of magnitude smaller, and thus no
3D-1D (order-disorder) transition has been observed down to 1.2 K.

Finally, let us address the question why the exchange constant in NENP is two
orders of magnitudes smaller than for the cuprates. The lattice constants of NENP
are given by a=15.2234, b=10.34 and ¢=8.295A where the c-axis is along the
Ni’* ions as shown in Fig. 1.5. Thus the distance Ni-NO,-Ni in this compound is
about twice as large as the Cu-O-Cu bond in the cuprates. The exchange integral J
depends strongly on the bond-length between the ions which participate in the super-
exchange, e.g. by applying mechanical pressure to NiO a dependence of J(r) oc r™'°
has been found.[18] Hence a reduction in the overlap of the orbitals participating
in the super-exchange process can account for a dramatic drop in the exchange

constant and in the corresponding Néel temperature Ty o< J.

1.2 Electronic Models : Microscopic Foundation of Generic

Hamiltonians

1.2.1 The Three-Band Hubbard Model

Here we show how an effective Hamiltonian to describe the behavior of the
electrons in the CuO; planes can be constructed. From now on, we will only consider
a simplified generic 2D crystal square lattice, equivalent to the CuO; planes in Figs.
1.2 and 1.4. On such a square lattice, a unit cell contains one copper and two oxygen
atoms. (Eventually, additional layers will have to be added to account for 3D effects
in real materials.)

Let us first identify the relevant orbitals of the coppers and oxygens in the plane.

In the undoped parent compound, the copper atom (Cu : [Ar|(3d)'(4s)), loses one
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4s-electron and one of the 3d-electrons and is thus in a 3d” state, while the oxygens
(O : [He](2s)*(2p)*) gain two electrons (one being provided by the copper, the other
one coming from the charge reservoir). Thus, all three 2p-orbitals of the oxygens
are filled, and so are four of the five 3d-orbitals of the copper, while the d,._,. Cu
orbital has one electron and one hole. The degeneracy among the Cu 3d-orbitals
and the O 2p-orbitals is removed by crystal fields present in the solid. Also, the

copper and oxygen orbitals tend to hybridize.[19] Thus, we arrive at the levels shown

in Fig. 1.6.
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Figure 1.6: Level splitting between Cu?* and O*~ ions. Only the 3d-electrons of Cu
and the py and py orbitals of the oxygens are considered. The numbers in parentheses
indicate the occupations of the different levels in the undoped compound.[19]

From this figure, we see that in the solid the band highest in energy evolves
out of the Cu d,>_,>-orbital and one of the O 2p,-orbitals, sometimes referred to
as the upper antibonding band. Since there is only one hole present in the parent

compounds, it is now convenient to switch from “electron-terminology” to “hole-
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terminology”, e.g. the ‘vacuum’ for the holes is given by completely electron-filled
orbitals. Then, the lowest-energy state for the holes is the highest energy state for
the electrons, i.e. the antibonding d,>_,» band, and the energy level scheme in Fig.
1.6 has to be read upside-down in the hole-picture.

Why are the cuprates not metallic as would be expected for a system whose
lowest band is half-filled I Until now, we have neglected Coulomb repulsion between
charge carriers. First, let us consider on-site repulsions (Ug and U, for the Cu and
the O respectively). If Uy exceeds the charge transfer gap A = ¢, — ¢;, which is the
difference in on-site energy levels for the copper (¢;) and the oxygens (¢,), the holes
are bound to the Cu at half-filling, and the system is a charge transfer insulator.[22]
Indeed, it has been observed that the on-site repulsion on copper is about three
times as large as the charge transfer gap in the cuprates. [21]

Now, when additional holes are brought into the CuO,, will they preferably sit
on the Cu or the O atoms I' Naively, one might think that the additional holes
will go on the d,>_,»-orbital shown in Fig. 1.6. This would be equivalent to filling
Fermi-levels in a non-interacting electron gas. However, as we have seen above, this
system is strongly interacting, i.e. Ugq/A >> 1. Thus, the dopant-holes prefer to
go onto the highest O-level, since the Coulomb repulsion between holes strongly
disfavors double-occupancy of the Cu d,2_,2-orbital. The state with one additional
ligand hole on one of the oxygens surrounding the copper is often labeled d°L.

Based on these considerations, Emery proposed a three-band model which takes
into account the on-site Coulomb repulsions in addition to the highest oxygen 2p-

level and the Cu d,2_,2-orbital.[20] The corresponding Hamiltonian - often referred
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to as the three-band Hubbard model - can be written as

H = —t, Z(p}di + h.c.) =ty Z(p}pj/ + h.c.) + e Z nil + 6 Z n?
ij) {3in i J
+ Uy Z nflTnfll + U, Z n?Tnfl + Uy Z n?nﬁj. (1.3)
i Jj (ij)

Here, p; are fermionic operators that destroy holes at the oxygen ions labeled j,
while d; corresponds to annihilation operators at the copper ions at site i. (ij) refers
to Cu-O nearest neighbor pairs of ions. The hopping terms correspond to the hy-
bridization among nearest neighbors Cu and O atoms, and are roughly proportional
to the overlap between orbitals. For completeness, a direct O-O hopping term with
amplitude t,, is also included. U4 and U, are positive constants that represent the
repulsion between holes when they are at the same d and p orbitals, respectively.
Upq has a similar meaning, i.e. it corresponds to the Coulomb repulsion when two
holes occupy adjacent Cu — O ions. In principle, interactions at larger distances
should also be included in the Hamiltonian, but they are presumed to be screened
by the finite density of electrons.

From a band structure calculation the actual values of the parameters entering
the Hamiltonian Eq. 1.3 can be estimated. They are given in table 1.2 showing that
we are indeed in the strong coupling regime.[21]

The spin-1/2 holes which preferably sit on the coppers at half-filling, super-
exchange with neighboring Cu-spins via the the upper antibonding band. Thus it is
possible to describe the half-filled system by an effective 2D Heisenberg Hamiltonian
which is a limit (i.e. Uy/A >> 1) of the more complicated multi-band Hamiltonian

in Eq. 1.3. In a perturbative approach around the atomic limit, the exchange

2
integral is given by J = ( o

m([}—d + 52— ).[22] Similarily, in the 1D compound

2A+U,
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NENP, the two spin-1/2 holes which couple into a spin-1 particle due to Hund’s
rules super-exchange via the highest electron-occupied molecular orbit, i.e. the
antibonding 7*-orbital, of the NOJ.

Finally, we would like to mention that the considerations leading to the three-
band Hubbard Hamiltonian apply to both types of cuprate superconductors, the
hole-doped (“p-type”) and the electron-doped (“n-type”). Hence, with the same
reasoning when additional holes are brought into the system, it can be argued that
dopant-electrons prefer to go onto the copper d,2_,2-orbital leading to a d'° configu-
ration. The doping behavior of the three-band Hubbard model is summarized in Fig.
1.7. Note, that this figure is only schematic since in reality effects of hybridization

deform the symmetric ionic bands shown here. [22]

undoped
d U dt
do_ A
.
S >~
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-
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Figure 1.7: Schematic effect of doping for a charge-transfer CuO; plane. Hole doping
moves the Fermi level into the charge-transfer band, while electron-doping moves it
into the upper Hubbard band.[23]

1.2.2 One-Band Models
Unfortunately, the three-band Hubbard model is a system that is very difficult to

study since it still contains many degrees of freedom, i.e. it has four states per site
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€p — €4 tpd tpp Ud ‘ Up ‘ Upd ‘

3.6eV 1.3eV 0.65eV 10.5eV ‘ 4eV ‘ 1.2eV ‘

Table 1.2: Parameters entering the three-band Hubbard Hamiltonian.[21]

(I7), 1), ] TL), and |0)). Thus, an N-site system contains 4" states, which makes
1t impossible to study cluster containing more than three CuQO; unit cells using
exact diagonalization techniques, since the required Hilbert space exceeds present
day computer capacities.

Also, the parameters entering the Hamiltonian (table 1.2 ) are of the order 1-
10 eV, while the phenomena we want to address have energy scales around 0.125
eV (antiferromagnetism with Ja 1450 K) and 0.009 eV (superconductivity below
T. ~ 100K ). It thus becomes desirable to create an effective Hamiltonian, emerg-
ing as a strong-coupling limit from the more general three-band Hubbard model,
with fewer degrees of freedom (e.g. fewer bands) and with energy scales that can
address the antiferromagnetic and superconducting phases observed in the materials
of interest.

Zhang and Rice brought forward the idea that the exchange interaction between
a dopant-hole on the oxygen and the hole which is confined to the copper at half-
filling is so strong that triplet excitations can be neglected.[24] Doping with holes
then creates local “Zhang-Rice” singlet states which can be thought of as empty
sites on a new lattice made only out of Cu atoms, i.e. in the new lattice the
unit cell of the three-band Hubbard model containing 2 oxygens and one copper
collapses into a single site. In general, the dopant-hole can be in a linear combination

of all four oxygen 2p-orbitals surrounding a Cu spin-1/2 hole. Thus the Zhang-



21

Rice singlet is a spin-0 charge-2e object that extents over a CuO, cluster. By
diagonalizing this cluster (and also the CuyOg¢ cluster ) Zhang and Rice showed
that indeed there is a gap of ~ 3.5 eV between the singlet and the closest triplet
state. The d'" configuration, i.e. double-occupancy of the Cu d,2_,.-orbital, is
not accessible to the Zhang-Rice singlet. Thus, when writing down an effective
Hamiltonian - the ¢-J Hamiltonian - involving only spin-1/2 holes on the Cu and the
CuOy-singlets centered around Cu sites (Zhang-Rice singlets), the upper Hubbard
band corresponding to doubly occupied Cu d,2_,2-orbitals will no longer appear.
Since the Zhang-Rice singlets are centered around the copper ions anyway, it is not
necessary to have oxygen sites to be present in the effective Hamiltonian. Then, it

can be shown that the three-band Hubbard model reduces to

1
H=1JY(SiSj— 1) — 1 Sl (1= nis) (1 = nj_s)eje + heel,  (1.4)
(ij) (ij)o

where S; are spin-1/2 operators at the sites i of a two dimensional square lattice,
and J is the antiferromagnetic coupling between nearest neighbor sites (ij). The
hopping term allows for the movement of spin-half particles, explicitly excluding
double occupancy due to the presence of the projector operators (1 — nj_,). This
model has only three possible states per site i.e. a spin-up | T) or spin-down | |),
or the absence of a spin |0). At half-filling, the hopping term is not active, and the
t-J model reduces to a simple Heisenberg model with an irrelevant off-set -N/2 for
an N-site cluster.

In order to account for hopping between next-nearest neighbor sites, an ad-

ditional kinetic term (—t’z<ij>g[c;rg(1 — ni_,)(1 — nj_,)¢, + h.c.]) is sometimes
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added to Eq. 1.4. Then, by choosing the parameters J = 0.128eV, t = 0.43eV
and t' = —0.07eV the low-energy spectrum of the hole-doped three-band Hubbard

model (with parameters given in table 1.2) can be reproduced quite accurately.[21]

Three-band Hubbard model
=

-
DOS Ud [\
LHB @ uHBl
-~ w
t-J model

AN

One-band Hubbard model

-
/\Ueﬁ/\
| HB UHB >

Figure 1.8: Schematic band structure of the CuO; planes. In the three-band Hub-
bard model, U is the Coulomb repulsion at the copper ions, and A is the difference
in energy between the Cu d,2_,2-orbital and the O 2p-orbitals. In the t-J model,
the upper Hubbard band (UHB) is neglected because the strong Coulomb on-site
repulsion disfavors double-occupancy. Here, the only band present is formed out
of the two lower bands of the three-band model. The one-band Hubbard model
simulates the charge transfer gap using an effective U.g between its lower (LHB)

and upper (UHB) Hubbard band.

In addition to the t —J and the three-band Hubbard model, theorists have ex-
tensively studied the more generic two-dimensional one-band Hubbard model.[25]

This model can be written as

1 1
H=—t > (c,cjo + yein) + U (miy — 5)(miy — 5), (1.5)
(i) i

T

where ¢ is a fermionic operator that creates an electron at site 1 of a square lattice

with spin 0. U is the on-site repulsive interaction, and t the hopping amplitude.
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Although we know that the cuprates present a band structure with three dominant
bands (as shown in Fig. 1.8), the one-band Hubbard model tries to mimic the
presence of the charge transfer gap A by means of an e f fective value of the Coulomb
repulsion U.g, and thus it presents only two Hubbard-bands. However, in contrast
to the t-J Hamiltonian, the one-band Hubbard model is particle-hole symmetric,
e.g. there is a symmetry between the upper and the lower Hubbard band which is
not present in the t-J model (see Fig. 1.8 ).

In the strong coupling limit (U/t — oo), the one-band Hubbard model can be
mapped into the t-J model with the addition of terms involving three sites as is
shown in Appendix A.[19] However, close to half-filling the three-site terms are
not expected to influence the physical behavior of the plain t-J model (Eq. 1.4 )
dramatically.

Similar to the t-J model, the low-energy spectrum of the one-band Hubbard
model can be fitted quite well to that of the three-band Hubbard model by using

the parameters U = 5.4eV, t = 0.43eV and t' = —0.07eV, i.e. U/t ~ 12.[21]

1.3 Conclusions

Having set up Hamiltonians which are believed to contain the physics of anti-
ferromagnets and high-T. superconductors we are left with the formidable task of
calculating measurable quantities to gain some understanding of experiments done
on these materials. Unfortunately, there is no known perturbative technique that
allows us to treat strongly correlated models like the ones discussed above in a

controlled manner.
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Then we rely heavily on numerical techniques such as Quantum Monte Carlo,
high-temperature expansions and exact diagonalization. These methods are un-
biased (i.e. in contrast to mean-field based approaches) since they do not make
an initial assumption on the nature of the ground state of the system. However,
each numerical method has its limitations. High-temperature expansions are usually
confined to temperature regimes which are inaccessible to experiments. Quantum
Monte Carlo simulations of fermionic systems suffer from the “sign-problem” which
is severe in the presence of strong correlations. Finally, the Lanczos approach we are
going to take is limited to relatively small cluster sizes, since the Hilbert space of
the models under consideration typically grows exponentially with the system size.

In spite of their limitations, numerical studies already have provided us with
insights into strongly correlated systems.[3] In particular, we have now a good un-
derstanding of the magnetically ordered phase in the cuprates close to half-filling,
although no exact solutions exist for that regime. Also, there has been some progress
in understanding the “anomalous” normal state properties of the cuprates around
optimal doping, i.e. it can be argued on the basis of numerical studies that short-
range antiferromagnetic correlations are responsible for the shape of the Fermi sur-
face as it 1s observed in Photoemission experiments. In the following chapters we will
elaborate on the implementation of the exact diagonalization method on strongly
correlated fermionic systems described by the model Hamiltonians we have presented

here.



CHAPTER 2

THE LANCZOS METHOD

2.1 Introduction

In this chapter, an algorithm is presented which allows us to determine numer-
ically the ground state and some excited states for Hamiltonian operators on finite
clusters. The basic idea of this ‘Lanczos method’ is that a special basis can be
constructed where the Hamiltonian has a tridiagonal representation. [26] Once in
this form the ground state of the matrix can be found easily using standard library
subroutines.[27] It is standard terminology to call a matrix ‘exactly diagonalized’
when its ground state has been obtained using the Lanczos method. The algorithm
presented here will be illustrated by considering the example of a spin-1/2 Heisen-
berg chain. However, the ideas brought forward are quite general, and apply to any
Quantum Hamiltonian.

In the following section, it will be shown how to set up a basis in which the
Hamiltonian operator can be represented. At this point it is also demonstrated how
to incorporate translational, spin-inversion and other symmetries into the program.
This is essential since the Hilbert space for a given cluster can be dramatically
reduced once these symmetries are applied.

Subsequently the Hamiltonian matrix elements for the given basis are calculated.

Special attention is given to efficient computer storage of these matrix elements, e.g.
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by making use of the hermeticity of the Hamiltomian. Also, typically the matrix
representation for a given operator is sparse, and thus a lot of memory can be saved
by only storing the non-zero elements and their respective positions.

After the calculation of the matrix elements, the actual Lanczos step is discussed.
Certain variations on the original Lanczos idea are presented. We will allude to a
very educational modified Lanczos algorithm which might especially appeal to the
beginning programmer.[28]

Once the ground state has been obtained the expectation value of various phys-
ical quantities can be easily evaluated. In particular, our algorithm allows the
calculation of “off-diagonal” averages which are complicated to obtain using other
numerical techniques such as Monte Carlo simulations.

Finally, one of the most appealing features of the Lanczos method is that it
allows the calculation of dynamzical properties of a given Hamiltonian. Here, we
demonstrate how to evaluate spectral functions which are directly comparable to
scattering experiments on related materials, such as Neutron diffraction, Raman
scattering or Photoemission spectroscopy. [29]

Since in Lanczos algorithms the Hilbert space of the Hamiltonian operator grows
exponentially with the cluster size, there are memory restrictions on the number of
sites which can be studied given by the storage capacities of present day computers.
The largest matrices which can presently be diagonalized have approximately ~
1,350,000 basis states. (This is the approximate size of the reduced Hilbert space for
a Hubbard model on the 4x4 square cluster at half-filling.) If an efficient procedure
is implemented to read from and write to disk, then the number of basis states can

be dramatically increased. Because of these restrictions on the cluster size, there are
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limitations for a complete finite-size scaling analysis with this technique. Commonly,
the Lanczos method is thus preferably used in the study of low-dimensional systems,
like in our example of a 1D Heisenberg cluster. However, even in 2D bulk properties
can be computed with reliability, in particular if the correlation lengths for a given

system do not exceed the cluster size.
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Figure 2.1: An /8 x /8 cluster is constructed on top of a base side defined by the
vector R = 2z + 27.

It has become commonplace in the Lanczos literature to diagonalize not only 2D
clusters with M x M sites, but also other square clusters , which have axes forming
a nonzero angle with the lattice axes. Here we show how to construct tilted square
clusters that completely cover the two dimensional square lattice. As an example
let us consider the /8 x /8 cluster shown in Fig.2.1 . As a base side a vector
R = n# + mj commensurate with the square lattice is chosen. Both of the integers
(n,m) have to be even or odd to guaranty for a N (= /N x v/N)-site cluster that
N = R? = n?2 + m? = even, e.g. N = 22 4+ 22 = 8 for the /8 x /8 cluster and
N =32 +12 = 10 for the v/10 x /10 cluster.[30] Then a square is constructed from

the base side. The lattice sites inside the square belong to the tilted cluster.
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Examples can be found in Ref.[30]. Some of the “magic” number of sites

that admit a complete covering of the bulk lattice with tilted squares are N =

8,10, 16, 18,20, 26,32, ....

N=8 N=10 N=16 N=18 N=20®

[ ] [ X ) [ X )
00000 0000 00000
00000 000000 000000
00000 00000000 0000000
00000 000000 000000
00000 o000 00000
[ X J o0
N=26 N=32 ® N=m:
000000 00 [ X )
000000 000000 0000
000000 000000 000000
000000 0000000 00000000
000000 000000 0000000000
000000 0000000 00000000
0000 000000
N=36 ¢ N=40 N=50*9e®

Figure 2.2: Shapes of some tilted 2D clusters used in the Lanczos literature. N is
the total number of sites.

In Fig. 2.2 we explicitly provide the actual shape of some clusters which may
be useful for the implementation of the Lanczos technique in 2D systems. Each of
these clusters can be circumscribed by a square. Note that some of these clusters
do not have all the symmetry properties of the bulk (e.g. reflections with respect to
the axes are particularly subtle). The reader should not be confused by the shape
of these clusters. For example, rotations in 90 degrees exist in the N=32 cluster and

in many others, although it may not seem obvious.

2.2 Setting Up the Basis

Memory limitations impose severe restrictions on the size of the clusters that

can be studied with the Lanczos method. To understand this point, note that
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although the lowest energy state can be written in a tridiagonal {|¢,)} basis as
|t00) = 3, €| ), this expression is of no practical use unless |¢,,) itself is expressed
in a convenient basis to which the Hamiltonian can be easily applied. For example,
consider the basis for spin-1/2 models where 5. is defined at every site, schematically
represented as |n) = | T[T ...).

When setting up the S”-basis for a given spin-1/2 Heisenberg cluster, it is useful
to represent a given S”-basis state by a binary number, since the action of the
Hamiltonian operator on these basis states can then be done using efficient logical
operations which are implemented in most computers as intrinsic functions. One
way of doing this is by labeling the lattice sites having an up-spin by a ‘0’ and those
with a down-spin by a ‘1’. For example, the two Néel states of the 4-site chain can

be represented as

[ 1TLT) = (1,0,1,0),
| T111) =(0,1,0,1). (2.1)
Once the down-spins have been placed the whole configuration has been uniquely
determined since the remaining lattice sites can only be occupied by up-spins. The
set of binary numbers ( one per site) can then be easily converted into an integer
ldw = Do) 2!l where the summation index ¢ | represents all positions in the lattice
where a down-spin resides. For example :
(0,1,0,1) — 2° + 2 =5,
(1,0,1,0) — 2" +2° = 10, (2.2)
where the rightmost lattice position has been labeled as cluster point ‘0’, the one to

the left of it as ‘1’, etc. .
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Using the above convention for an integer representation of each basis state, let

us systematically set up the whole S*-basis starting with the configuration corre-
sponding to the lowest value for the integer :4,. For the S7, = 0 subspace of the

4-site chain, this is given by

[TTL) = daw(1) =3
[ TITL) = iaw(2) =5
[T = iaw(3) =6
[T = daw(4) =9
| 1T1T) = daw(3) = 10
| LITT) = dau(6) = 12. (2.3)

In Eq.2.3 the argument of the vector ¢4, just runs over the whole set of states. The
whole basis will be represented in a single vector 24,,.

In general, the number of down-spins for the 57, = 0 subspace to be diagonalized
is equal to the number of nested loops over the lattice sites needed to generate the
basis, i.e. for the above example two loops are required (the two ‘do 20’ loops in
the following routine). In the outermost loop a state with only one down-spin is
created. In each of the inner loops one more down-spin is added on top of the
previous configuration. The following FORTRAN routine generates the states for
the above example as shown in increasing order. It can be easily modified to be

applicable to larger clusters and other S}, subspaces.

idw(np) stores the configuration of down-spins
‘np’ is greater or equal to the dimension of the Hilbert space
ns = number of sites
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jspdw = number of down-spins
‘m1’ is just a counter

integer idw(10)
ns=4
jspdw=2
jendl=ns
jend2=ns
ml=1
do 20 11=1,jend1
if(jspdw.gt.1) then
js2=Ishift(1,11-1)
jend2=I11-1
end if
do 20 12=1,jend2
if(jspdw.gt.0) then
jsl=xor(Ishift(1,12-1),js2)
idw(m1)=jsl
ml=ml-+1
end if
20 continue
stop
end

If we had used ‘jspdw=1" and ‘jend1=1’, then the basis states for the 57, =1
subspace would have been obtained. The functions ‘xor’ and ‘Ishift’ are machine-
specific. However, they are standard on SUN and IBM workstations (on a CRAY
‘shift]’ is used instead). ‘Ishift’ shifts a given binary configuration to the left by the
specified number of spacings, e.g. 1shift(3,1)=6 corresponds to the process where the
configuration “3” of Eq.2.3 is shifted by one unit to the left into the configuration
“6”,1e. | TTLL) — | TL1T). Note that ‘Ishift’ is not necessarily equivalent to a trans-
lation in a periodic system, since it only translates a given spin-down configuration
to the left and does not provide for reentrance from the right side of the cluster once
a spin-down has exited from the left side, i.e. Ishift(12,1)=8 = | |[T7T). Special care

is needed for this subtle “boundary” problem.
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‘xor’ is the exclusive logical ‘or’-operation which yields a ‘1’ only if one of
the two binary entries which are compared is a‘l’ and the other one a ‘0, e.g.
xor(3,6)=(0011).0r.(0110)=(0101)=5. Later, the logical operations ‘rshift’ and
‘and’ will be used also. While ‘rshift’ is just the inverse to ‘lshift’, ‘and’ yields
a ‘1 only if both of the two binary entries which are compared are ‘1’, e.g.
and(3,6)=(0011).and.(0110)=(0010)=2. In table 2.1 the logical operations ‘and’

and ‘or’ on the binary entries ‘i’ and ‘j’ are listed.

Table 2.1: Table for the logical operations ‘and’ and ‘or’.

i j and or

0 0 O 0
01 0 1
1 0 0 1
11 1 0

With these definitions of the logical operations and the shift operations the
reader can get back to the subroutine on the previous page and show that the
output written into the vector ‘idw(n)’ is precisely the 6 states of Eq.2.3.

For electronic one-band models the size of the S*-basis set grows exponentially
with the system size. For example, the dimension of the Hilbert space of a Hubbard
model (four states per site) on a N site cluster is in principle 4", which for N = 16
corresponds to ~ 4.3 x 10? states. Such a memory requirement is beyond the reach

of present day computers. In practice this problem can be considerably alleviated by
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the use of symmetries of the Hamiltonian that reduce the matrix to a block-diagonal
form. The most obvious symmetry is the number of particles in the problem which
is usually conserved at least for fermionic problems. The total projection of the
spin S7,, may also be a good quantum number, e.g. the ground state for a system
with an even number of fermions typically has S7 , = 0. For translational invariant
problems, the total momentum k of the system is also conserved introducing a
reduction of ~ 1/N in the number of states (this does not hold for models with
open boundary conditions or explicit disorder). In addition, several Hamiltonians
have extra symmetries, like spin inversion. On a square lattice, rotations of 7 /2
about a given site, and reflections with respect to the lattice axes are good quantum
numbers (although care must be taken in their implementation since some of these
operations are combinations of others and thus not independent).

Here we will present as an example the implementation of translational symmetry
for spin chains. When generating the S*-basis states a subroutine is called which acts
with the translational operator TT(k) on a given state, and thus creates “classes”
of states which have momentum as a good quantum number. The phase acquired
by each translation of the starting state is ¢(=**") | where k = 27n/ns, ns is the
number of lattice sites, and n (= 0,1, ... , ns) is an integer number labeling the
quantization state. Only one representative per class of good momentum is kept
(for example the state with the smallest integer), i.e. for the 4-site (k=0 , S7,, = 0)
state L[| T111) + | TLLT) + | LTT) + | [171)] only the representative | 11/1) = 3
is stored. These classes form a new translationally invariant basis. In the above

routine the call for the symmetry subroutine should thus be inserted right before

basis states are written to the vector ‘idw’, otherwise it is simply lost. Only if the
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state ‘js1’ is the first representative of a translationally invariant class should it be

written to the vector ‘idw’. A FORTRAN example for such a symmetry subroutine

is provided here.

OO O O O O 0O 0 o0 o0 o060

This subroutine generates members of a

momentum symmetry class for a given input state jsl

idwl(nc) stores the configurations of down-spins belonging to
classes generated by the symmetry operation

signr(nc) and signi(nc) are the real and imaginary parts of the
phases acquired by the symmetry operation

nc = number of states in a class

ns = number of sites

itouch=1 only when a new class is successfully generated from the
jsecth = momentum of translational operator in units of 2-7/ns
input state js1, else itouch=0

jspdw = number of down-spins

subroutine symlin(js1,idwl,nc,itouch,signr,signi)
integer idw1(10),iarg(10)
real signr(10),signi(10),snewr,snewi,diff

ns=4

jsecth=2

idwl(1)=jsl

signr(1)=1.0

signi(1)=0.0

iarg(1)=0

itouch=0

nc=1

init=1

iend=1

do 10 jv=1,ns-1

do 15 iv=init,iend
j=idwl(iv)
il=and(Ishift(j,1),(2**ns-2))4and(rshift(j,ns-1),1)
if(il.1t.js1) go to 20
snewr=cos(2.0%3.14159*(jsecth+iarg(iv))/ns)
snewi=sin(2.0*3.14159*(jsecth+iarg(iv))/ns)
do 16 iu=1,nc
if(il.eq.idwl(iu))then
diff=snewr-signr(iu)

if(abs(diff).gt.0.0001) go to 20
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diff=snewi-signi(iu)
if(abs(diff).gt.0.0001) go to 20
go to 15
endif
16 continue
nc=nc+1
signr(nc)=snewr
signi(nc)=snewi
idwl(nc)=il
iarg(nc)=jsecth4iarg(iv)
15  continue
init=iend+1
iend=nc
10 continue
itouch=itouch+1
20 return
end

For one given S”-basis state ‘js1’ this routine produces all nc members of the
class with momentum quantum number ‘jsecth’ (in units of 27 /ns). ‘nc’ is in many
cases equal to the number of sites but can be smaller. The number of classes, NC,
in the largest momentum subspace can be estimated for spin systems from the bulk
limit value : NC:% : é as the number of sites goes to infinity (ns — oo);
nyp and ng, are the number of up-spins and down-spins respectively. This estimate
for a basis set reduction by % due to translational invariance is typically a little
too small for finite systems, e.g. for the ns=8 chain in the S}, = 0 subspace
#ﬁdw! . nls = %iu . é = 8.75, while the actual number of classes in the largest
momentum subspace i1s 10.

The members of a class are stored in the vector ‘idwl’, and their respective
phases in ‘signr’ (real part) and ‘signi’ (imaginary part). The subroutine given as an

example in the previous page is for a 4-site cluster and momentum & = 7. It can be

generalized to an arbitrary size lattice and arbitrary momentum by changing ‘ns’ and
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‘jsecth’. The action of the translational operator is contained in the statement “il =
and(Ishift(j,1),(2**ns-2)) 4+ and(rshift(j,ns-1),1)”, e.g. the configuration ‘= | [TT]T)
is moved to the left by one lattice spacing (i.e. | [TT/[LT) — | TTLLT])). Note that
27 —2 = | ||lll --- [T). Because of periodic boundary conditions the leftmost
down-spin enters at the rightmost lattice point. This is achieved by the second
‘and’-operation in the translation. The phase acquired in this transformation is
temporarily stored in ‘snewr’ and ‘snewi’.

The outer loop (‘do 10°) runs over all operations associated with the given sym-
metry, i.e. up to ‘ns-1’ for the translations on a linear lattice. However, for certain
states the same set of configurations are already repeated after less than ‘ns-1’
operations. This would be the case, for example, when jsl=| T|T]) is translated
into itself by TTZQ(k)7 although ns-1=3. Thus a cut-off has to be inserted (‘do 16’
loop) : if a previously configuration is reiterated it is not stored again in ‘idwl’,
and if its phase differs from the previous one then no class of good momentum can
be generated, and the routine is terminated. Let us consider the example of the
state | T/T]) = 5. In the beginning of the routine, this state will be written as
a first entry to ‘idwl’ and its phase as first entries to ‘signr’ and ‘signi’ respec-
tively, e.g. idwl(1)=5, signr(1)=1.0, signi(1)=0.0. In the k=0 subspace, the first
translated state | [T|T) = 10 = idw1(2) has the phase (signr(2)=1.0, signi(2)=0.0).
Since this state is different from the initial one the ‘do 16’ loop leaves things un-
changed. However, the subsequent translation produces idwl(3)=5, signr(3)=1.0,
signi(3)=0.0 which is equal to the entries for the initial state. Thus all members
of the class corresponding to the initial state have been obtained prior to the ter-

mination of the loop over the maximum number of possible translations (‘do 107).
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Then the ‘do 16’ loop becomes active and forces an exit (go to 15) out of the sym-
metry generating loop. If the above example is considered for the £ = 7/2 sub-
space the corresponding states and phases are : (idwl(1)=5,signr(1)=1.0,signi(1)=0.0),
(idw1(2)=10,signr(2)=0.0,signi(2)=1.0), (idwl(3)=>5,signr(3)=-1.0,signi(3)=0.0) .... For
this case the difference in the real part of the phase between the initial state
and ‘idw(3)’ is diff=-2.0. Hence, no translationally invariant state with momen-
tum k = 7/2 can be generated from | T|T]), and the execution of the symmetry
subroutine is interrupted by force using ‘if(abs(diff).gt.0.0001) go to 20’ which gives a
negative result (itouch=0).

In the subroutine ‘symlin’ we have used the convention that each class is repre-
sented by the member state whose integer representation is the lowest of all member
states, i.e. the state ﬁ“ TTLL 4+ | TLLTY 4+ | LUTT) + | L1T1)] is represented by
| 7711) = 3. Then, we want the translational operator only to act on this seed state
to generate the other members of the class. If the input state ‘js1’ is larger than
this seed state the subroutine is terminated with a negative result (itouch=0) by the
statement if(il.lt.js1) go to 20.

The variable ‘itouch’ signals whether a new class for the given quantum number
could be generated from a given S*-state ‘js1’. Ouly if that is the case (itouch=1)
should this state be stored as a representative in the routine which generates the
basis.

Other symmetries are implemented in a similar manner. The only statement to
be replaced is the one which produces the translated state ‘i1’ and the ones related
to its phase (‘snewr’ and ‘snewi’). E.g. for spin-inversion symmetry - which is only

applicable in the S* = 0 subspace - the first statement is replaced by “i1 = xor(j,2**ns-
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1)”. Then ‘1’ becomes the spin-inverted state of ‘j’, i.e. | TTl]) — | [[TT). Note
that 2 —1 = ||| --- ]). Since spin-inversion produces classes made out of only
two states, an outer loop summing over all possible operations related to the given
quantum number is not necessary in this case. The two possible quantum numbers
(+) associated with spin-inversion are contained in ‘jsecsi’ which only affects the

real part of the phase. Thus, “snewr= jsecsi” and “snewi=0".

8 8
5i617, 567
4 82348 _i82i348
56171567 5671567
2348234 213.4i8 23 4
15671 15671
234 234
1 1

@ (b) ©

Figure 2.3: Symmetry operation on a tilted 8-site square cluster cluster. (a) The
cluster covers the complete 2D square lattice. (b) Vertical translation by one lattice
spacing. (c) Anti-clockwise rotation by 7 /2.

The symmetry subroutine works also in two dimensions. Here translational
invariance in the Z- and g- directions can be treated separately. As mentioned
above, for the 2D case there are square clusters which have axes forming a nonzero
angle with the lattice axes. As an example we treat here the /8 x /8 cluster.
As can be seen in Fig. 2.3(a) the 2D plane is completely covered by these square
lattices. A translation by one lattice spacing in the vertical direction is depicted in
Fig. 2.3(b). This operation corresponds to the statement “i1 = and(lshift(j,2),132)
+ and(Ishift(j,3),112) + and(rshift(j,1),8) + and(rshift(j,5),2) + and(rshift(j,7),1) 7, e.g.
the spin originally on the lattice point ‘6’ is moved to lattice point ‘8’, ‘4’ into ‘7’,
etc.. (Here the convention was used that one up-spin at lattice site ‘i’ contributes

with the binary value 20~"). Let us discuss the above statement in a little more
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detail : the first term (and(lshift(j,2),132)) locates spins on sites 1 and 6 in their
proper place. The second term locates spins on sites 2, 3 and 4. The third term
fixes the spin originally at site 5, the fourth term that at site 7, and the last term
fixes the spin originally at site 8. Then the outer loop in the symmetry subroutine
goes through the 3 possible translations along the j- direction, and the phases are
the same as for the 1D case.

In Fig. 2.3(c) an anti-clockwise rotation by =/2 is shown. This opera-
tion corresponds to the statement “i1 = and(Ishift(j,2),24) + and(rshift(j,2),2) +
and(lshift(j,3),128) + and(rshift(j,4),4) + and(rshift(j,1),64) + and(j,33)”. Since there
are 3 possible 7/2 consecutive rotations until the cluster is mapped again into it-
self the corresponding quantum number, say ‘jsecro’, can assume 3 different values
(‘jsecro=1,2,3’), and the outer loop goes through 3 iterations. The corresponding

? and “snewi =

phases are then given by “snewr = cos(2.0*3.14159%(jsecro*jv)/ns)
sin(2.0*3.14159*(jsecro*jv)/ns) 7.

It is clear that the use of symmetries is very important to carry out Lanczos
calculations on large enough clusters. Currently, the one-band Hubbard model can
be studied on clusters only slightly larger than the 4 x 4 lattice at least near half-
filling, while at low electronic densities larger systems can be dealt with. The three
band Hubbard model can be analyzed on the cluster CusOs (2 x 2 cells), but not
much bigger. The t — J model has been studied on clusters of up to 26 sites at low
hole density, and perhaps lattices of 32 sites will be reachable in the near future.

Note that this model has a maximum in the dimension of its Hilbert space at an

intermediate hole density.
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Finally, let us turn to systems with more than two possible orientations
per lattice site, e.g. the spin-1 chain (with S = —1,0,1), the t-J model
(| 7). 1),]0)) or the Hubbard model ( | T),| 1),]0),] Tl)). In these
cases the entire information for a given state cannot be stored in only one
integer, ‘idw’, but we need at least two, 1.e. ‘up’ and “dw’. For ex-
ample, configurations for the spin-1 chain can be described by integer pairs
|S? = —1) : (0,1),|5* = 0) : (0,0),]S* = 1) : (1,0). Then, a state of the spin-1 chain
can be labeled like ie. |T710]0]) iy =2 +2° = 48,14y = 2° + 22 = 5, where
we have again followed the convention that the rightmost lattice site is labeled as
cluster point ‘0’, the one to the left of it as ‘1’ etc. . The necessary subroutines
to produce the basis states for a given spin-1 chain are a natural extension of the
routines presented above and will not be discussed here.
However, for systems involving mobile fermions, like the t-J model away from
half-filling or the Hubbard model, there is an additional complication due to the

fermion anticommutation relations:

{cl,¢;} = 615,

{C;F?c;{} = {CZ',C]‘} =0.

As a consequence of these relations there is a phase difference (a minus sign) between
states like céTcIT|vac> and CITC$T|VaC>, ie. céTcIT|vac> = —CITC$T|Va,C>. Since both
sides of the equation correspond to a state | T1), we have to choose one order - the
normal order - of fermion operators over the other to uniquely describe this state, e.g.
N chcIT|vac>. However, due to the periodic boundary conditions, the action of

the translational operator forces the reentry of a fermion which exits the left of the
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chain on the right side, hence potentially destroying the normal order. To illustrate
this point let us look at the action of the 1D translational operator through r lattice
spacings, T,(k) = eikrﬂgziﬂiicc;rocc_l_wciomg, on the state CITc;rl|vac> =10170)in a
4-site chain. In the definition of the translational operator, the product runs over all
n, occupied sites. For momentum k=0 and translation by one lattice spacing r=1, we
have Tl(k =0)[0[T0) = c;rTcch;lcucITc;”va@ = +C£Tc;l|vac> = 4| |7 00). Thus,
a translation without a jump across the boundary causes a plus sign, while
T, (k = 0)| |7 00) = C;TC2TC$1C31C;TC;1|VE‘C> = +c;Tc$l|vac> =—]100]). The k=0
state for the above example would thus be %[—|—| L7T00)—| 700 |)+|00 [T)+]0 [T 0)].
The best place to implement this additional phase shift due to the fermion anticom-
mutation relations is in the symmetry subroutine, i.e. ‘symlin’ which has been
discussed a few pages before. If the convention of the above example is used, a
phase shift occurs only when in a translation a spin jumps across the boundary, and

only when there is an odd number of spins of a kind on a chain with an even number

of sites.

2.3 Calculating the Matrix Elements

In this section the matrix elements for the Heisenberg Hamiltonian
H = J> S8,
<15>

= J Y [(S1S7) + %(STS{ + S7S)] (2.4)

<15>
are calculated in the S”-basis.[31] When not using a basis which is reduced by sym-

metries, the Ising term (S757) yields only diagonal matrix elements while the fluc-

tuation terms 1(S;"S;” + S S;") give strictly off-diagonal contributions to the matrix
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representation. However, when symmetries are introduced the fluctuation terms can
also have diagonal contributions.

The fluctuation terms cause an exchange in spin-orientation between neighbors
with opposite spins, e.g. | T/[T>— | [T/T> and | T|[T>— | TIT/>. The way to
implement spin-flip operations of this kind on the computer is by defining so-called
‘masks’, which indicate the position of the spin-pair to be exchanged. A mask is
a binary with ‘0’ everywhere but at the position of the spin-pair to be flipped,
e.g. (0,.....,0,1,1,0,.....0). Then the logical operation ‘xor’ can be used on the initial
state and the mask state to produce the final configuration with spins flipped at
the position indicated by the mask. As an example, for a 6-site chain the mask
state (0,0,1,1,0,0) = | T10l{17>= 2* 4+ 2° = 12 flips the spins at sites ‘2’ and ‘3’
(starting to count from the right with site ‘0’). Acting with this mask on the state
| TLTLTI>= 21 yields xor(21,12)=(010101).0r.(001100)=(011001)= 25 = | TLLTT]>.

It is convenient to produce all masks needed for a given operation at a certain
cluster geometry in a separate subroutine. Here we present an example for a simple
routine which gives all masks, here denoted as ‘itbond1’, for spin-flip operations on

a linear lattice with periodic conditions.

ni < nj label the two sites for a given bond
ibond1(nb) : stores the mask configuration for
two nearest neighbor down-spins
ns : number of sites
nb : number of bonds

subroutine bonlin(ni,nj,ibond1)

integer ni(8),nj(8),ibond1(8)

o0 o o o

ns=4
nb=2*ns
do 10 in=1,ns-1
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ni(in)=in
nj(in)=in+1
10 continue
ni(ns)=1
nj(ns)=ns
do 15 id=1,nb
nl=ni(id)-1
n2=nj(id)-1
ibond1(id)=2**n1+2**n2
15 continue
return
end

In this routine all possible neighbor pairs (ni,nj) are constructed. The corre-
sponding mask state is then simply the binary ‘ibond1’ corresponding to two spin-
downs at (ni,nj). For more complicated cluster geometries, like 2D tilted clusters,
the only change that has to be introduced in this routine is the entries for the pairs

(ni,nj) as is shown in Fig.2.4.

Figure 2.4: Labeling of sites and bonds on a periodic v/8 x /8 cluster.

The entries for ‘ni’ and ‘nj’ in the above subroutine for an /8 x v/8 cluster would
thus be : ni(1)=1,nj(1)=>5, ni(2)=2,nj(2)=3, ..... , 1i(9)=1,nj(9)=3,ni(10)=2,nj(10)=5,

...... Similarily for next nearest neighbor interactions a mask ‘tbond2’ can be defined
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which involves pairs of next nearest neighbor sites. E.g. for the v/8 x /8 cluster
those would be : ni(1)=1,nj(1)=4,ni(2)=2,nj(2)=6, ..... , ni(9)=1,nj(9)=2, ....

Now all off-diagonal elements can be constructed using the masks for the given
cluster. Since typically electronic Hamiltonian matrices (e.g. for Heisenberg, Hub-
bard or t-J models) are sparse, it is convenient to store only the non-zero off-diagonal
matrix elements, say ‘hj’, and their position in the matrix. Furthermore, since the
matrix representation of any quantum mechanical Hamiltonian is hermitian, only
the upper right triangle of the matrix has to be stored. The size of the vector for the
diagonal elements, say ‘sdiag’, requires less memory, and thus even the ‘zero-entries’
can be stored. In Fig.2.5 the structure of the Hamiltonian matrix representation is

visualized.

sliagl) 0~~~ 0 hj) 0---- 0 hj(2) 0----
sdiag 0---- 0 h(@d 0---
sdiag(3)

Figure 2.5: Schematic matrix representation for a Hamiltonian with diagonal ele-
ments ‘sdiag’ and off-diagonal elements ‘hj’.

To get a notion of the memory requirements, consider the 16-site Heisenberg

chain. In the 57, = 0 subspace there are NC:;—%:12,870 states when no sym-

metries are used. This is the linear size of the corresponding matrix representa-

tion, and also equal to the number of diagonal matrix elements. Thus naively a
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12,870 x 12,870 matrix would have to be stored. However, since only the upper

right triangle of the matrix needs to be considered, this reduces to approximately

NC-NC __ 12,870-12,870

5 5 = 82, 818,450 states. If only the non-zero off-diagonal elements

are stored this number can be reduced dramatically. For the spin-1/2 chain the
size of the vector corresponding to the non-zero off-diagonal matrix elements can be
estimated by considering the number of possible spin-flips generated from a given
configuration. The maximum number of spin-flips is obtained from the Néel con-
figurations | T|T] ... > and | T[T ... >, e.g. these configurations have matrix

elements with N other states for a N-site cluster. Thus an upper boundary for

NC-NC = N __ NC.N

D) NCo — 5 1.€.

the number of non-zero off-diagonal elements is given by
%70'16 = 102,960 for the above example. However, the typical number of transi-
tions for a given configuration due to spin fluctuations is considerably lower, i.e. the
two states with the least number of spin-flips (only two) are the ‘phase separated’
states | [/ ... [[TT...TT>and | 1T ... TTLl ... [I>.

Before we turn to an example of a subroutine which produces matrix elements
for the Heisenberg chain, let us discuss how to store the position of the non-zero
off-diagonal matrix elements ‘hj’ in an efficient manner. A standard way of storing
sparse matrices is to write the horizontal position of non-vanishing elements above
the diagonal in the Hamiltonian matrix to an integer vector, say ‘icolmj’, and the
number of non-zero elements per column to another integer vector, say ‘knon0j’.

Let us for example consider the Hamiltonian matrix for a 4-site Heisenberg chain in
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the S7,, = 0 subspace [31]

0 1/2 0 0 1/2 0
1/2 —1 1/2 12 0 1/2
0 1/2 0 0 1/2 0
0 1/2 0 0 1/2 0

1/2 0 1/2 1/2 -1 1/2

0 1/2 0 0 1/2 0
Using the above convention the entries for ‘icolmj’ are (2,5,3,4,6,5,5,6), while for
‘knon0j’ we get (2,3,1,1,1), storing only the upper right triangle of the matrix.

In the subroutine ‘smatel’ (shown below) the diagonal and off-diagonal matrix
elements for a 4-site Heisenberg chain are evaluated. The only change which needs
to be introduced to generalize this routine to arbitrary cluster sizes and shapes
is done by adjusting the number of lattice sites ‘ns’. Appended to this routine

is another subroutine ‘search’ which finds the label ‘my’ for a binary input state

yx’. This routine is called to determine the horizontal position of an off-diagonal

matrix element < jketdw|H|jx >, where ‘jketdw’ is the initial configuration and ‘jx’

1s generated from ‘jketdw’ by a spin-flip operation as discussed above.

idwO(nclass) stores representatives for the nclass classes
created by symmetry operations

icount is the number of non-zero off-diagonal matrix
elements ‘hj’ created in this routine

‘icolmj’ stores the number of the column where each non-zero
off-diagonal matrix element resides

‘knon0j’ is the number of non-zero off-diagonal matrix
elements in a given column

The diagonal matrix elements are stored in sdiag(nclass)
‘sclass’ stores the square root of the number of states
for a given class

OO O O O o o o o o0
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o0 oo

subroutine ‘bonlin’ defines the mask
configurations (explained before)

subroutine ‘symlin’ generates representatives
of the classes (explained before)

subroutine smatel(idw0,nclass,icount,hj,icolmj,knon0j,

1 sdiag,sclass)

integer ni(8),nj(8),ibond1(8)
complex hj(10)

real zr(10),2i(10),sdiag(10),sclass(10)
integer nmy(10)

real signr(10),signi(10)
integer idw1(10),idw0(10)
integer icolmj(10),knon0j(10)
integer nsr(8)

ns=4

nb=ns*2

nmax=2%**ns-1

icount=0

call bonlin(ni,nj,ibond1)

do 41 m1=1,nclass
diagonal contributions
jketdw=idw0(m1)
‘nsr(is)’ stores the spin (0 or 1) at site ‘is’

nmImy=0
do 15 is=1,ns
il=is-1
nsu=and(rshift(jketdw,il),1)
15  nsr(is)=nsu
zrm1=0.0

‘zrm1’ accumulates the diagonal contributions from >
‘ni(n)” and ‘nj(n)’ are the sites at the end of bond ‘n’

do 20 n=1,nb
nbi=ni(n)
nbj=nj(n)

ir=nsr(nbi)+nsr(nbj)
if(ir.eq.1)then

47



zrm1l=zrm1-0.25
else

zrml=zrm1+0.25
endif

20  continue

off-diagonal contributions

call symlin(jketdw,idw1,no,itouch,signr,signi)

do 37 le=1,no
jbradw=idw1(lc)
do 25 j2=1,nb
ibd1=ibond1(j2)
jtypdw=and(jbradw,ibd1)
if(jtypdw.eq.ibd1)go to 25
if(jtypdw.gt.0)then
jy=xor(jbradw,ibd1l)
call search(jy,idw0,nclass,itouch,my)
if(itouch.eq.1)then
if(my.gt.m1)then
nmlmy=nmlmy+1
nmy(nmlmy)=my
zr(nm1lmy)=0.5*signr(lc)
zi(nm1my)=0.5%signi(lc)
else if(my.eq.m1)then
zrm1=zrm140.5%signr(lc)
endif
endif
endif
25 continue
37  continue
sdiag(m1)=zrm1
den = 1.0/sclass(m1)
do 38 i=1,nm1my
ind=nmy(i)
ip=i+icount
icolmj(ip)=ind
hj(ip)=cmplx(zr(i),zi(i))*sclass(ind ) *den
38  continue
icount=icount+nmlmy
knon0j(ml)=nmlmy
41 continue
return

48
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C***********************iif***********************************

This routine finds whether the input state ‘jx’ is

a representative of a class (i.e. the state in a class

with the minimum integer representation). If yes, itouch=1
Also, it finds the label ‘my’ of the state, which will

be the number of the matrix column where the
corresponding matrix element is placed

o0 o o o o

subroutine search(jx,idw0,nclass,itouch,my)
integer idw0(10)

itouch=0
n2=nclass
nl=1
34 if(nl.gt.n2) go to 50
my=(nl+n2)/2
if(jx.gt.idw0(my)) go to 35
if(jx.eq.idw0(my)) go to 36
n2=my-1
go to 34
35 nl=my+1
go to 34
36 itouch=1
50 continue
return
end

After the subroutine ‘bonlin’ has been called to set up the geometry of the cluster
a loop over all classes which make up the basis is started (‘do 41’). The diagonal
matrix elements for a given representative ‘jketdw’ are obtained by subsequently
testing pairs of neighboring spins for their relative orientation (‘do 20’ loop). If they
are equal they contribute J/4 to the corresponding matrix element, else it is -J/4.
The preliminary diagonal element is then stored in ‘zrm1’. Information about the
spin orientation at a given site ‘is’ is obtained from the operation and(rshift(jketdw,is-
1),1) . If this quantity is equal to ‘1’ there is a down-spin at site ‘is’, else it is an

up-spin.
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The off-diagonal elements are obtained in the ‘do 25’ loop. If symmetries are used
they depend on the relative phase acquired by the symmetry operation(s), thus the
symmetry subroutine ‘symlin’ has to be called before the off-diagonal elements can
be calculated. Then an additional loop over the members of the class represented
by ‘jketdw’ (‘do 37’) has to be added since a given initial state might have a non-
vanishing transition into another class but not necessarily into its representative.

In the ‘do 25’ loop a spin-flipped state jy=xor(jbradw,ibond1(j2)) is constructed
from an initial configuration ‘jbradw’ using the mask ‘itbond1’ if the two spins lo-
cated at the positions indicated by ‘ibond1’ have opposite orientation. Then, the
subroutine ‘search’ is called to determine whether ‘jy’ is a representative. If yes
(itouch = 1) the label ‘my’ of the new state is obtained. ‘my’ indicates the column
to where the matrix element under construction will be written. Each contribution
from a spin-flipped pair at two neighboring sites corresponding to the mask ‘ibond1’
is stored in zr (real part) and zi (imaginary part). The energy contribution is J/2
(plus the phase acquired by symmetry operations) per flipped pair. If the spin-flip
transition maps the initial state jbradw’ into itself (this can only be the case when
symmetries are used) the contribution of J/2 (plus phase) goes to the corresponding
diagonal matrix element ‘zrm1’. Once this loop is completed all contributions to the
diagonal elements are written to ‘sdiag’ and the ones to the off-diagonal elements
are stored in ‘hj’.

In the ‘do 38’ loop, the Hamiltonian matrix is set up as vizualized in Fig.2.5, e.g.
the number of the column where the off-diagonal Hamiltonian matrix element ‘hj’

1s stored is written to the integer vector ‘icolmj’, etc.. Later, the number of entries



51
for a given column ‘n’ are stored in the vector ‘knon0j(n)’. The factors going into

‘hj’ are :

1. a factor % which stems from the prefactor of the fluctuation term

(S{S;” + 57 Sj") (enters in ‘zr’ and ‘zi’),

2. phases associated with the momentum of the subspace which also enter ‘zr’

and ‘zi’,
3. factors associated with the number of states per class, ‘sclass’.

As an example, we discuss the off-diagonal matrix element between the k=0 states

of a 4-sites chain (see also Appendix B). The only two states in the k=0 subspace are

ja) = A TTLD T TN+ L) + 1 1111)] and [0) = 5[] TIT1) +] [T17)]. Then,
(LS (5787 + 78T a) = [ TLTL 1+ | LRI L4 1110 +1 L1 = V2.
Here, ‘sclass’ for state |a) is ‘\/4’, and for state |b) it is ‘v/2". The ratio of these
factors eneters ‘hj’” as ‘sclass(ind)*den’ in the ‘do 38’ loop, where ‘ind’ indicates the
number of the column associated with state |a) .

The subroutine ‘search’ determines for a given input state ‘jx’ whether it is a
representative of a class, and if it is, then finds the corresponding label ‘my’ for
that state. The search is done by iterative comparison of the input state with
all representatives stored in ‘idw0’. The search result is positive (itouch=1) when
the input state can be matched with one of the representatives ( see the line :
‘if(jx.eq.idwO(my)) go to 36’). Then also the associated label ‘my’ of the input state
is returned. This label indicates the column corresponding to ‘jx’ in the Hamiltonian

matrix.
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Both subroutines, ‘smatel’ and ‘search’, are quite general and apply to spin
systems of any size or shape. It is a good idea to keep the geometry dependent
operations in separate routines (such as ‘symlin’ and ‘bonlin’). Then changes in the
code can be implemented only at a few problem dependent locations in the program.

Finally, for the case of systems with mobile fermions, such as the t-J and the Hub-
bard model, there is a hopping contribution of the form H; = —t Zﬁj%g[cigcm + h.c]
to the Hamiltonian. (For the case of the t-J model this term acts only in the re-
stricted space where no double occupancy at a single site is allowed.) The evaluation
of matrix elements for this term is analogous to the the procedure in ‘smatel’. How-
ever, care has to be taken because of the fermion anticommutation relations (Eq.
2.4) which were mentioned at the end of the preceeding section.

Let us first focuss on an example to illustrate the problem. The fol-
lowing matrix element of the hopping Hamiltonian yields a negative contribu-
tion : ([ 07T O0H |[T00)= <vac|c3lc1T(—thTc2T)c£Tc;l|vac> = —t. On the other
hand, the following matrix element gives a contribution with the opposite sign :
(070 |He| [700)= <vac|c2Tc01(—tc$lc3l)c£Tc;l|vac> = t. The difference in sign be-
tween the two matrix elements is associated with the jump of a spin across the
periodic chain boundary, i.e. in the second example the hopping term, —tczlc;),l,
forces such a jump. Then, the anticommutation relations between the fermion op-
erators yield a minus sign for this transition. In analogy to the discussion of normal
ordering in the set-up of translational invariant basis states, the occurance of a phase
due to fermion anticommutation relations depends on the number of spins of a kind

in the state which is acted upon with the hopping operator, i.e. an odd number of
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up- or down-spins in a chain with an even number of sites is a prerequisite for such
a phase change.
In 2D systems the phases due to anticommutation can appear even if no fermions

are crossed at the boundary. For example, if we have the following configuration on
}ooo
loto

4

0

then moving the spin from ‘1’ to ‘5’ gives a minus-sign.

a ladder

where the sites are labelled as

76 5
321

2.4 The Lanczos Procedure

In this section the actual Lanczos procedure is discussed, i.e. a matrix repre-
sentation in which the given Hamiltonian is tridiagonal is found iteratively. After
this step is carried out, the evaluation of the lowest eigenvalue and its correspond-
ing eigenvector can be done using standard routines (e.g. ‘Numerical Recipes’ or
‘Eispack’ provide such routines).[27]

The Lanczos method can be described as follows : first, it is necessary to select
an arbitrary vector |¢o) in the Hilbert space of the model being studied. The overlap
between the actual ground state |¢y), and the initial state |¢o) should be nonzero.
If no “a priori” information about the ground state is known, this requirement is

usually easily satisfied by selecting an initial state with randomly chosen coefficients
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in the working basis that is being used. If some other information on the ground
state is known, like its total momentum and spin, then it is convenient to initiate
the iterations with a state already belonging to the subspace having those quantum
numbers (and still with random coeflicients within this subspace).

After |¢g) is selected, define a new vector by applying the Hamiltonian H to the

initial state. Subtracting the projection over |¢g), we obtain

(g0l | d0)
(G0l

that satisfies (¢g|¢1) = 0. Now, we can construct a new state that is orthogonal to

|61) = H o) — |$0), (2.6)

the previous two as,

(61]H|¢1) (01]¢1)
(01]¢1) (¢ol¢0)

It can be easily checked that (¢o|¢p2) = (¢1]|d2) = 0. The procedure can be general-

oy 191 -

|¢2> = H|¢1> - |¢0> (2-7)

ized by defining an orthogonal basis recursively as,

|Gns1) = H|bn) — cnldn) — B2 dnr), (2.8)

where n = 0,1,2, ..., and the coeflicients are given by

o (6al]60) (Snl6n)
! <¢n|¢n> ’ <<bn—1|<bn—1>7

supplemented by 3, = 0, |¢_1) = 0. In this basis, it can be shown that the Hamil-

B = (2.9)

tonian matrix becomes,

Qo 51 0 0
pr ar B2 0
H = 0 62 (%)) 63 ce (210)

0 0 53 Qs
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1.e. 1t 1s tridiagonal as expected. Once in this form the matrix can be diagonalized
easily using standard library subroutines, for example the routine ‘TQLI’ provided
in ‘Numerical Recipes’. However, note that to diagonalize completely the model
being studied on a finite cluster a number of iterations equal to the size of the
Hilbert space (or of the subspace under consideration) is needed. In practice this
would demand a considerable amount of CPU time. However, one of the advantages
of this technique is that accurate enough information about the ground state of the
problem can be obtained after a small number of iterations (typically of the order
of ~ 100 or less). Thus the method is suitable for the analysis of low temperature
properties of models of correlated electrons.

Here we provide an example for a routine which iteratively sets up the tridiago-
nal representation of a given Hamiltonian as discussed above. The main part of the
Lanczos routine (‘lanczs’) is written in a model independent way and can be used
for arbitrary systems. The model dependence is contained entirely in the subroutine
‘atimex’ in which the Hamiltonian matrix is applied to a given input vector |¢,).
At each iteration step, the subroutine ‘TQLIO’ is called to obtain the lowest eigen-
value for the tridiagonal representation under construction. The routine ‘TQLI0O’
which only finds the lowest eigenvalue but not the corresponding vector is a slightly
modified version of ‘TQLI’ provided in ‘Numerical Recipes’. As outlined there a
considerable amount of computing time can be saved when only the eigenvalue is
needed. Thus, in our code, the ground state eigenvector is only computed once the
eigenvalue has converged up to the specified accuracy, marked ‘tol’. The lines to be
omitted from ‘TQLI’ when the ground state vector is not needed are highlighted in

‘Numerical Recipes’ and will not be discussed here.
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In each step of the Lanczos algorithm the values of «

and f are computed. These are the non-zero elements

of the tridiagonal matrix T(j). ‘ev’ is the eigenvalue
calculated up to an accuracy specified by ‘tol’. ‘x’ is

the input vector, ‘xf’ is the ground state vector; both

have dimension ‘np’. ‘hj’,‘icolmj’,*knon0j’ and ‘sdiag’

have been defined and calculated in ‘smatel’. The dimensions
in this subroutine have been set up for 6 classes and

50 Lanczos iterations
subroutine lanczs(ev xf,x,hj,icolmj,knon0j,sdiag)

real sdiag(6),tol

integer icolmj(10),knon0j(10)
complex hj(10)

complex x(6), a(6), y(6), xf(6)
complex qold

real alfa(50), beta(50), vectri(50)
real aprov(50),bprov(50),z(50,50)

itm=50
itmax=>50
np=6
nhj=8
nclass=6
tol=1.e-10
il=1

just initialize some vectors

25 doi = 1,nclass
q(i) = cmplx(0.0,0.0)
y(i) = emplx(0.0,0.0)
end do
if(il.eq.1)then
do i = 1,nclass
xf(i) = x(i)
end do
else
do i = 1,nclass
x(i) = xf(i)
xf(i) = emplx(0.0,0.0)
end do
endif

start main loop

evmin0 = 100.0
do 11 its = 1, itm

56
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we calculatef,, = \/{¢n|Pn)

|¢n—1) is already normalized

anorm?2=0.0
do i = 1,nclass
anorm?2 = anorm2 + x(i)*conjg(x(i))
end do
beta(its) = sqrt(anorm?2)
do i = 1,nclass

gold = q(i)
q(i) = x(i) / beta(its)
x(i) = qold

end do

the subroutine ‘atimex’ is appended at the end
call atimex (q,y,np,nclass,nhj,hj,icolmj,knon0j,sdiag)

the moments «a,, and 3, of Eq.2.10 are
now calculated using the recursion kq.2.7

alfa(its) = 0.0
do i = 1,nclass

x(i) = y(i) - x(i) * beta(its)

alfa(its) = alfa(its) + real(q(i) * conjg(x(i)))
end do

do i = 1,nclass

x(i) = x(i) - q(i) * alfa(its)

end do

if (il.eq.1)then
its0 = its
do in=1,its0

aprov(in)=alfa(in)
bprov(in)=beta(in)
end do

lowest eigenvalue of Tm

call tqli0(aprov,bprov,its0,itmax)

ev = 1.0e5
do in=1,its0
if(aprov(in).lt.ev)then
€2 =ev
ev = aprov(in)
min = in
endif
end do

if(min.eq.1)then
do in=2,its0
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diff = abs(aprov(in)-ev)
if(diff.gt.1.0e-6)then
if(aprov(in).lt.e2)e2 = aprov(in)
endif
end do
endif

test of accuracy. if satisfied the iterations are terminated

if(its.gt.30.and.abs(ev-evmin0).1t.tol)go to 12
evmin() = ev
else
do i = 1,nclass
xf(i) = xf(i) + q(i) * vectri(its)
end do
endif

11 continue

Main loop now finished

12 if (il.eq.1)then

il=2
itm = its0
do in=1,its0

aprov(in)=alfa(in)
bprov(in)=beta(in)
end do
do 40 in=1,its0
do 41 jn=1,its0

z(in,jn)=0.0
41 continue
z(in,in)=1.0
40 continue

ground state vector of Tm

call tqli(aprov,bprov,its0,itmax,z)
do in=1,its0
vectri(in) = z(in,min)
end do
go to 25
else
anorm=0.0
do i = 1,nclass
anorm = anorm + xf(i)*conjg(xf(i))
end do
sqnorm = sqrt(anorm)
do i = 1,nclass
xf(i) = xf(i) /sqnorm
end do
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endif

return

end
CRRRR Rtttk rrrk okl sk skttt stk sk ok sk ook ok o o ok

c program to compute H|q) = |y)

c nh: total number of nonzero elements

c knon0(m1): number of nonzero elements in row m1=1,nclass
c icolmn(i): column corresponding to the ith nonzero value

subroutine atimex(q,y,np,nclass,nhj,hj,icolmj,knon0j,sdiag)

complex hj(nhj)

complex ¢(np),y(np)

real sdiag(np)

integer icolmj(nhj),knon0j(np)
AJ=1.0

icounj=0

do 11 m1=1,nclass
y(ml)=AJ*sdiag(m1l)*q(m1)
11 continue

do 21 m1=1,nclass
do 25 ic=1,knon0j(m1)
icounj=icounj+1
jeol=icolmj(icounj)
y(ml)=y(ml)4+AJ*hj(icounj)*q(jcol)
y(jeol)=y(jcol)+AJ*conjg(hj(icounj))*q(ml)
25 continue
21 continue

return
end

In the main loop of ‘lanczs’ (‘do 11°) a tridiagonal representation of the Hamilto-
nian is obtained iteratively, and at each iteration step ‘its’ the eigenvalue ‘ev’ for the
corresponding ‘its by its’-matrix is found. The loop runs up to a maximum number
of iterations (‘itm’) specified by the user, only if the eigenvalue has not converged
up to an accuracy ‘tol’ before ‘itm’ has been reached. As a convergence criterion
the eigenvalue at a given iteration ‘its’ is compared with the one obtained in the
previous one (‘its-1’). If the difference between these two quantities is smaller than
‘tol’ the main loop is exited (if(its.gt.30.and.abs(ev-evmin0).1t.tol)go to 12 ).(The first

condition if(its.gt.30 ...) is there to ensure that the Lanczos routine does not get
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trapped in a metastable state in the first couple of iterations.) If the eigenvalue does
not converge within ‘itm’ iterations up to the desired accuracy the loop is exited
anyway. In that case it is advisable either to repeat the run with more Lanczos
iterations ‘itm’ or to lower the convergence criterion ‘tol’.

After the main loop is exited the ground state vector is calculated for the tridiag-
onal matrix representation of length ‘1ts0’, which is equal to the number of iterations
needed to converge to the eigenvalue (or ‘its0’ = ‘itm’ in case it did not converge).
Then the main loop is entered one more time, since the ground state vector ob-
tained in the tridiagonal representation needs to be transformed into the S*-basis
to be useful for taking ground state averages and for the evaluation of dynamical
quantities. Since in these last ‘its0’ runs through the main loop the only step is the
transformation of the ground state vector from the basis in which the Hamiltonian
is tridiagonal into the S*-basis, calls for the subroutine ‘TQLIO’ are unneccessary
and are omitted. This is done by defining a variable ‘i’ which is set to be ‘1’ for the
first time the main loop is entered, and ‘2’ for the second time. Using if-statements
(if (il.eq.1)then) the call for ‘TQLIO’ is ommitted for the second run-through.

Now let us take a closer look at the technicalities in ‘lanczs’. Before the main
loop is entered, the complex vectors ‘x’, ‘xf’, ‘y’ and ‘q’ are initialized. ‘q’ an ‘y’ are
only temporary vectors, while ‘x’ and ‘xf’ are the initial (usually randomly chosen)
and final state vectors respectively. When the main loop is entered for the second
time to evaluate the ground state vector in the S*-basis, the initial vector is set equal
to the final vector of the last Lanczos iteration before the main loop was exited.

In the main loop (‘do 11’), the input vector ‘x’ is normalized first. The nor-

malization yields the temporary vector ‘g’ on which the Hamiltonian acts in the
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subroutine ‘atimex’. The square root of the normalization constant gives the off-
diagonal elements ((its) for the given Lanczos iteration ‘its’. Naturally, 5(1) does
not contain any information about the Hamiltonian since it is just the normalization
of a randomly chosen seed state. Thus 3(1)=/, does not appear in the tridiagonal
representation (Eq. (2.10)). While the 3’s are off-diagonal contributions from the
components of H|g) which do not have a projection on |¢) itself, the a’s measure
the projection of the Hamiltonian on the input state ‘q’. In Fig.2.6 one Lanczos

iteration step is visualized.

X(its+1)> |y(its)>=H|q(its)>

beta(its+1)

alpha(its) 9>
=|x(its)>/beta(its)

Figure 2.6: Schematic representation of a Lanczos iteration step.

Let us shortly discuss the matrix multiplication performed in the subroutine
‘atimex’. In this routine the Hamiltonian matrix is applied to the normalized in-
put state ‘q’. ‘atimex’ is dependent on the physical system under consideration
in two ways : it contains the diagonal (‘sdiag’) and off-diagonal (‘hj’) elements of
the Hamiltonian representation (including their positions contained in ‘colmj’ and
‘knon0j’ as discussed above), but also the coupling constants (here the exchange

coupling ‘AJ’) of the Hamiltonian.
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In the ‘do 11’ loop the diagonal contributions of the Hamiltonian are applied
to the input vector. This is a simple scalar multiplication. The more complicated
step of applying the off-diagonal contributions to the input state is performed in
two nested loops (‘do 21’ and ‘do 25’). While the outer loop goes through all rows
of the matrix, the inner one goes through all ‘knon0j(m1l)’ non-zero off-diagonal
elements per row ‘m1’. It is instructive to have Fig.2.5 in mind when reading this
subroutine. Since only the upper-right triangle of the Hamiltonian matrix is stored
there have to be two multiplications, one yielding the contributions from the upper-
right triangle (y(m1)=y(m1)+AJ*hj(icounj)*q(jcol)) and the ones from the hermitian
lower-left triangle (y(jcol)=y(jcol)+AJ*conjg(hj(icounj))*q(m1)).

To understand the rapid convergence to the ground state which is obtained us-
ing the Lanczos algorithm, it is convenient to consider a variation of this technique
known as the “modified” Lanczos method.[28] In this method, the diagonalization
proceeds using “2 x 2 steps” i.e. first the Hamiltonian in the basis |¢o) and |¢4)
(defined above) is diagonalized. The lowest energy state is always a better approxi-
mation to the actual ground state than |¢o). This new improved state can be used
as the initial state of another 2 x 2 iteration, and the procedure is repeated as many
times as needed, until enough accuracy has been reached. Then, it is clear that the
modified Lanczos method, or the original Lanczos, can be described as a systematic
way to improve a given variational state that is used to represent the ground state
of the system, and thus it is not surprising that ground state properties can be
obtained accurately well before the rest of the matrix eigenvalues are evaluated.

In the modified Lanczos method the ground state is always explicitly at hand.

While this technique converges more slowly to the ground state than the standard
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Lanczos method, the latter needs to be run twice to get the ground state explicitly.
Thus, in some cases it is easier to use the modified Lanczos approach which is
somewhat simpler to program. An even more pedestrian technique is the power
method which consists of applying the Hamiltonian n-times to the initial state until
all excited states are filtered out. For very simple problems this method may be

sufficient, and it is easy to program.

2.5 Calculating Expectation Values

The strength of the Lanczos method lies not only in the arbitrarily precise nu-
merical evaluation of the energy levels for a given physical system but also their
corresponding eigenstates. This enables us to evaluate the expectation value for
any operator of interest, in particular off-diagonal correlation functions which are
often not accessible to Quantum Monte Carlo simulations due to statistical errors
intrinsic to the method.

At this point we want to caution the reader about the convergence of the Lanczos
method presented in the previous sections. In general, the coefficients of the eigen-
states converge roughly 2-3 orders of magnitude more slowly than the corresponding
eigenvalues. Thus, if a certain minimum difference in energy eigenvalues between
two Lanczos steps, say A(F;11 — F;) ~ 107'2, is chosen as a cut-off criterion for the
Lanczos procedure, the corresponding eigenstate has not converged to an equivalent
precision, e.g. A(cfy, — ') ~ 1077 where |¥; >= Y, ¢'|a > and the index 7’
denotes the respective Lanczos iteration step.

Averages of interest are typically spin-spin correlations (e.g. < S7S >), charge-

density correlations (e.g. < n;n; >) and combinations thereof. Unfortunately, for
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finite systems with an intrinsic continuous symmetry, such as for the Heisenberg,
the XY, and the t-J Hamiltonian, the expectation value of the order parameter -
e.g. the staggered magnetization at a given site < 5! > - vanishes, although this is
not true for the bulk limit (N — o0) if an external staggered field % is used and if
the limit A — oo is taken after N — oo. In these cases, where the order parameter
cannot be determined directly, one needs to study the finite scaling behavior of the
corresponding correlation function (< S7S7 >) to extract the correlation length and
the ordered moment.

Taking diagonal averages, which determine the projection of an operator on a
state, 1s a very easy procedure once the ground state is obtained, since it only
exploits computational concepts which have been already discussed. On the other
hand, off-diagonal averages which connect different states of the same subspace (e.g.

<c:»r

¢; > where i and j are site indices) are more delicate since they require searching.
They will be discussed in the next section.

In the following, we will discuss a short routine which calculates the diago-
nal spin-spin correlation function ‘avspincorrel’ for a system with ‘ns’ sites and
ground state vector ‘xf’. The ‘nclass’ representatives ‘1idw0’ are also input param-
eters. The correlations are measured with respect to an arbitrarily chosen site,
here : icentr=1. The spin-autocorrelation ‘avspincorrel(1)’ gives the on-site cor-
relation at site ‘icentr=1’, the nearest-neighbor correlations ‘avspincorrel(2)’ and
‘avspincorrel(ns)’ (the later one comes in through periodicity for the linear case)
give the average relative spin orientation between sites ‘1’ and 2’ (‘1’ and ‘ns’),

etc. . The important sequence which determines whether there is a spin-down or a

spin-up at site ‘11’ for a given basis state idwl(kt) is given by the logical operation
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nsd=and(rshift(idwl(kt),i1),1). ‘nsd’ will be ‘1’ if there is a spin-down at site ‘i1’ and
zero if the spin is down.

A small additional complication enters this routine since it is written for the
general case where symmetries are exploited. Thus for each representative ‘1dw0’
the corresponding ‘nclassmember’ members of the class represented by ‘idw0’ have
to be found first. (This happens in the call for the subroutine ‘symlin’.) Then,
in an inner loop (‘do 26’) each individual basis state ‘idwl’ is acted upon by the

correlation operator as discussed above.

c This subroutine calculates diagonal spin-spin correlation functions
c ns : cluster size, nclass : number of classes
c xf : coeflicients of the ground state vector, idw0 : representatives of the
c basis states
c avspincorrel : averaged spin-spin correlation functions
c The dimensions chosen here are for a 4-site lattice
c with less than 10 states
subroutine averag(ns,nclass,xf,avspincorrel,idw0)
complex xf(10)
real avspincorrel(4),spincorrel(4)
integer idw1(10),idw0(10),nsv(4)
icentr=1
do jv=1,ns
avspincorrel(jv)=0.0
end do
c
c loop over classes
c

do 25 ks=1,nclass
xfsquared=xf(ks)*conjg(xf(ks))
jdw=idwO0(ks)
call symlin(jdw,idwl,nclassmember,itouch,signr,signi)
do js=1,ns
spincorrel(js)=0.0
end do
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loop over members of each class

do 26 kt=1nclassmember
do jv=1,ns
il=jv-1
nsd=and(rshift(idwl(kt),il),1)
nsv(jv)=2%nsd-1
end do
do jv=1,ns
spincorrel(jv)=spincorrel(jv)4nsv(jv)*nsv(icentr)
end do
26 continue
xfsquared=xfsquared /nclassmember
do jv=1,ns
avspincorrel(jv)=avspincorrel(jv)+spincorrel(jv)*xfsquared
end do

25 continue

return
end

The two major loops in this short routine are an outer loop over the class repre-
sentatives (‘do 25’) and an inner loop over all the members of a given class (‘do 267).
In the inner loop, the spin orientations for each site of a given basis state ‘idwl’ are
temporarily tabulated in the variable ‘nsv(jv)’ where ‘jv’ is an index which refers to
the distance relative to the reference site centered at ‘icentr’. ‘nsv(jv)’ can assume
the values ‘1’ or ‘-1’ corresponding to a spin-down or a spin-up at distance ‘jv’ from
‘icentr’. The contribution to the ‘jv -1'*"-neighbor spin-spin correlation function
from a given basis state ‘idwl’ is then added to a temporary vector ‘spincorrel’
in the line : spincorrel(jv)=spincorrel(jv)+nsv(jv)*nsv(icentr). The weight associated
with each of these contributions is determined by the square of the corresponding

coeflicient ‘xf(ks)’ for each basis element ‘idwl(kt)’ in the ground state. This can be
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visualised by using the variables of the above example in writing the ground state :

nclass
1@, >= > xf(ks)idwO(ks) > (— do 25 loop)
ks=1
1 nclassmember
1idwO(k = — idwl(kt do 26 1 . 2.11
fidwO(ks) > nclassmember ktZ::I fidwl(kt) > (= do 26 loop) (2.11)

The spin-spin operator S{S? acts on each [idwl(kt) > within the inner loop,
and its contributions are temporarily stored in ‘spincorrel’. The respec-
tive weight of the contribution of each individual basis state to the over-
all average is provided by multiplying ‘spincorrel’ by the quantity ‘xfsquared’
(= xf(ks) * conjg(xf(ks))/nclassmember), e.g.

. nclass nclassmember Xf(kS) * COIljg(Xf(ks))
<ULSISI T > = Y )

ks=1 kt=1

< idw1(kt)[S¢S? [idwl(kt) > . (2.12)

nclassmember

*

The overall normalization in the above subroutine was chosen such that the au-
tocorrelations (i.e. i=j) are equal to one. However, for real spin-1/2 operators there
should be an overall factor of 1/4 multiplying the correlation functions produced in
this routine.

The above procedure can be easily modified for any diagonal averages, e.g.
density-density correlations. This particular correlation is of interest for systems
with mobile particles, like e.g. the Hubbard or the t-J model. The only essential
ingredient to change in this case, is to create a hole-density operator instead of a
spin-density operator (here : nsv(jv)=2*nsd-1). In a system of moving spin-1/2 par-
ticles there can be 4 possible states per site : spin-up, spin-down, both a spin-up
and a spin-down, or a hole. However, in the t-J model, the double occupied state

1s discarded since it costs too much energy. To create a hole-density operator, we
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need to know the spin configuration at each site, i.e. there should be two lines (i.e.
nsu=and(rshift(jup,il),1) , nsd=and(rshift(jdw,il),1)) probing the up and down config-
urations respectively. Then, for the t-J model the hole-density operator probing a
given site is given by : 1-(nsu-nsd)**2.

Finally, for the isotropic Heisenberg model there is a good test to check whether

the spin-spin correlation functions have been computed correctly using the equality

By =<3 S;-S; >=3JINl < §/S¢ >, (2.13)

<ij>
where 1 and j denote nearest neighbor sites, and Nl is the number of links or bonds.
Thus, the ground state energy of the system is proportional to the nearest neighbor
correlations in this particular case. This correlation must be translationally invari-
ant, i.e. it should only depend on the distance between i and j rather than on the

actual value of 1.

2.6 Dynamical Properties

The greatest advantage of the Lanczos method over other numerical approaches
is the accurate determination of dynamical correlation functions for a given finite
system.[29] The Quantum Monte Carlo technique is, unfortunately, not suitable to
extract this information since the simulations are carried out in imaginary time.
Then, currently the Lanczos approach is the only reliable technique to evaluate
dynamical responses in a controlled way (of course, with the restriction of working
on small clusters). Finally, we will set-up the main formalism. In general, we are

interested in calculating quantities like,

1
qw—l—EO—I—ie—

Ia.) = = Im(((19|OF SOau)), (21
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where Oq is the momentum-dependent operator that we are analyzing (which de-
pends on the actual experimental set up under consideration), |¢)o(k)) is the ground
state of the Hamiltonian H whose ground state energy is Ey, its momentum is k
(although in most cases of interest k = 0), w is the frequency, and ¢ is a small (real)
number introduced in the calculation to shift the poles of the Green’s function into
the complex plane. Introducing a complete basis, 3, [¢),)(¢0,| = 1, and using the

identity —— = P(1) — iw6(x), which is valid when ¢ — 0 (where 2 is real, and P

rtie

denotes the principal part), we arrive to

I(a,&) = 3 {tbu(k + Q)| Ogltro(k)) [*6(w — (B — Eo)). (2.15)

which is the standard way to express the spectral decomposition of a given operator
in terms of squared matrix elements multiplying the pole structure contained in the
delta-functions. |¢,(k + q)) can be selected as eigenvectors of the Hamiltonian with
eigenvalues F,, and momentum (k + q). In practice, the é-functions are smeared by
a finite € i.e. they are replaced by Lorentzians according to 6(x) — %ﬁ

In order to evaluate numerically Eq. (2.15), it is convenient to write the Hamil-
tonian matrix in a special basis. As before, we will apply the Lanczos method to

write H in a tridiagonal form but instead of starting the iterations with a random

state, we choose

Oq lto(k)) |
V{2o(K)|0F (Oq (k)

as the initial configuration for reasons that will become clear soon. Following Fulde

|¢o(k + q)) =

(2.16)

(1991), consider the matrix (z — ]:]) and the identity (z — ﬁ)(z — ﬁ)_l = I, where
z = w+ Fy+ ie. Decomposed in the basis |¢,,) which is generated recursively from

[60) Via [Gusr) = H[6,) — anld) — F2]6,m1) with coefficients o, = Gelfllee 52
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(@nlpn)

Ty we arrive to >, (z — [:])mn(z — ﬁ)_l = Omp. For the special case p =0

np
we obtain, >, (z — f{)mnl'n = Omo, Where x,, = (2 — [:]);&. This represents a system
of equations for the unknown x,. The particular case of n = 0 corresponds to

<¢0|j|¢0> which is the quantity we want to study. Then, we need to solve this

linear system of equations.

For this purpose we use Cramer’s rule i.e. xg = d;l(ef%), where the matrices in
the {|¢,)} basis are given by,
Z — do —bl 0 0

—bl Z — dy —bz 0
z—H = 0 —bz Z — dy —bg 5 (217)

0 0 —bs zZ—as

and

BO == 0 —bz Z — dy —bg 5 (218)

0 0 —bs  z—as

where the coefficients «,,, b, were defined above in the text. The determinants of
these matrices are expanded as det(z — ]:]) = (2 — ap)det Dy — bidet Dy, and det By =
detDq, where in general the matrix D, is obtained from Eq.(2.17) by removing the

first n rows and columns. Now, it can be easily shown that

1

z—ag—b

(2.19)

To = 2 detDy

1 detD1
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The ratio of determinants on the right hand side of Eq.(2.19) can also be expanded

as

detD2 . 1

- _ _ 2d6tD3 ?
detDy  z—ay — b3 2D

(2.20)

and the procedure can be repeated until a full continued fraction is constructed.

Recalling the definition of the spectral intensity /(q,w), it can finally be shown that

o(K)|OL O lrbo(k
](qvw):_%]m[ (1o(k)[OLqOq|tbo(k)) | (2.21)
b}
b

which establishes the relation between Eq.(2.14) and a continued fraction expansion.
Recalling that z = w + Ky + ¢, we can then obtain the spectral function for any
value of the frequency w, the width ¢, and knowing the ground state energy and
momentum of the system. From the eigenvalues of the Hamiltonian in the special
Lanczos basis obtained by iterating with the initial state Eq.(2.16) we can get very
accurately the positions of the poles in the spectral function.

In practice, the best way to proceed in order to get the dynamical response of
a finite cluster is in two steps. First, run the Lanczos subroutine using |¢o(k + q))
as the initial state. It is clear that with this procedure we are testing the subspace
of the Hilbert space in which we are interested, and thus all the states found in the
Lanczos step will contribute to the spectral function (there will be as many poles as
iterations are carried out, assuming that this number is smaller than the total size of
the subspace being explored). Secondly, in order to find the intensity of each pole it is

useful to recall that any energy eigenvector |, (k)) of the tridiagonal representation
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of the Hamiltonian can be written as |1, (k)) = 3, & |¢n(k)), where |¢,,(k)) are

the orthonormalized vectors defined in the Lanczos procedure, with |¢o(k)) given

by Eq.(2.16). Then, it can be easily shown that

[(a(k + @)|Og|o(k))? = [cr[* (1o(k)|OT  Oq |0 (k)), (2.22)

and thus the intensity can be written in terms of the first component of each eigenvec-
tor obtained when the tridiagonal Hamiltonian matrix is diagonalized. In summary,
the whole process simply amounts to a Lanczos run with a very particular initial
state. To test the convergence of the procedure it is generally enough to plot the
spectral function with a particular ¢, and test by eye how the results evolve with
the number of iterations. In addition, more sophisticated methods to terminate the
iterations using terminating functions to approximate the asymptotic behavior of
the coeflicients @, and b, can be implemented to smoothen the spectral function.

Here, we present a subroutine (‘inispi’) which produces the seed state
|po(k 4+ q)) = >, exp(iq- rj)Ser|¢0(k)>, where |to(k)) is the ground state of the
system obtained in a previous Lanczos run. The state |¢o(k + q)) will be subse-
quently used as the input state for the Lanczos subroutine which yields the moments
a, and b,. Later, we will also show a very simple routine which converts the a,’s
and b,’s (n=0,..,N) into an N-pole dynamical correlation function.

We suggest for the computation of the dynamical correlation functions to create
a program separate from the one which produces the ground state energy and wave
function of the system under consideration. E.g. the coefficients of the ground
state vector as well as the representatives of the basis classes should be written to
files, say ‘groundstate’ and ‘classes’. Then, in the program which determines the

system dynamics these quantities are read in and acted upon N times with the
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operator under consideration, here 5?y. The resulting vector is then passed to the
Lanczos subroutine, where it is acted upon with the Hamiltonian. The components
of the Hamiltonian matrix should be set up in the dynamics program using the same
procedure (sequence of subroutines) as in the initial Lanczos program. Since the
elements of the Hamiltonian matrix act on |¢o(k 4 q)), here the matrix needs to be
represented in a subspace corresponding to the quantum numbers of |¢o(k + q)), i.e.
the classes should have momentum k 4 q. Also, for operators different than 5%,
the state |¢o(k + q)) may have a total spin and a total number of particles different
from |1o(k)), and the corresponding basis states have to be constructed accordingly.

The subroutines ‘search’ and ‘symlin’ called in the routine which is presented
below have already been discussed in previous sections. However, we have here
taken the liberty to modify ‘symlin’ slightly by making the translational wavenumber
‘jscth0’ (where k = %%gtho) an argument of the call instead of fixing it within the

subroutine ‘symlin’.

In this subroutine the spin operator is applied to the ground state vector
ns : number of sites

nclas0 : number of classes in the basis of the ground state

nclasl : number of classes in the basis of the final state, phi0 : final state
jscthl : wave number of the spin operator, sclasl : normalization for each
set of states in the basis of the final state

jscth0 : momentum of the ground state vector

o0 O o o o o

subroutine inispi(ns,nclas0,nclas1,phi0,jscthl,sclasl,jscth0)

complex phi0(10),psi0
real sclas1(10),signr(256),signi(256)
integer idw1(256)

open(unit=25 status=‘old’ file=‘groundstate’)
open(unit=30,status=‘old’ file=‘classes’)
pi = acos(-1.0)



do m1=1,nclasl
phi0(m1) = emplx(0.0,0.0)
end do

loop over classes of |psi0)

do 20 m1=1,nclas0
read(25,%)psi0
read(30,*)idw0
call symlin(jscth0,idw0,idwl,nclassmember,itouch,signr,signi)
psi0 = psi0 / sqrt(float(nclassmember))

loop over members of a given class

do 30 le=1.nclassmember

jbradw=idw1(lc)
acting with Sz on site j3

do 40 j3=1.ns

call search(jbradw,idw0,nclasl,itouch,my)
if(itouch.ne.0)then
nspin=2*and(rshift(jbradw,j3-1),1)-1
phase = - 2.0 * pi * (j3-1) * jscthl / ns
preal = cos(phase)
pimag = sin(phase)
phi0(my) = phi0(my) +

1 cmplx(preal,pimag) * nspin * psi0 *
1 cmplx(signr(lc),signi(lc))
endif
40 continue

30  continue
20 continue

do i=1,nclasl
phi0(i)=phi0(i)*sclas1(i)
end do

close(unit=25)
close(unit=30)

return
end
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The above routine is written in a rather generic way such that it can be modified
easily if there is interest in, e.g., the charge dynamics of the system. Again, we would
like first to highlight the central logical operation, which here is the 5”y operator
acting on the basis state ‘jbradw’ : nspin=2*and(rshift(jbradw,j3-1),1)-1 , where j3’ (
= 1,ns) is a site index. For the particular case of spin-dynamics, this corresponding
logical operation does not lead out of the subspace of S7,, = 0 and does not change
the number of particles of the ground state ‘psi0’ when it acts on it. However, the
number of class representatives of |i)o(k)) is not equal to the one for |¢o(k + q))
(nclasl # nclas0), e.g. this quantity is momentum dependent.

In the case of hole dynamics, the corresponding logical operation is given by :
jnew=xor(jbradw,2**(j3-1)). (This statement needs to be inserted right before the
call for the searching subroutine, and ‘jnew’ replaces ‘jbradw’ as the input state
for the search.) In contrast to the spin dynamics, this operation leads out of the
subspace of S7, = 0 into |S7,,| = 1/2 and decreases the number of particles by one.
Then, |¢o(k + q)) can be only represented in a basis whose member states belong to
the subspace of |¢o(k + q)) different from the basis for the initial state. Hence, the
Hamiltonian matrix, which will be applied to |¢o(k + q)) in the subsequent Lanczos
run to produce the dynamical moments also has to be represented in this new basis.

Let us now discuss the subroutine ‘inispi’ in detail. The only output variable is
‘phi0’ corresponding to the coeflicients of the seed state |¢o(k + q)). Input variables
are the number of sites (‘ns’) of the cluster, the number of classes of the subspace
of |tbo(k)) (‘nclas0’), the number of classes of the subspace of |¢o(k + q)) (‘nclasl’),

the momentum q of the operator S?q (‘jscthl’), the square root of the number of
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members for each class in the subspace of |¢o(k + q)) (‘sclasl’), and the momentum
of the initial state |1o(k)) (‘jscth0’). The parameters ‘nclasl’ and ‘sclasl’ can be
obtained by running the subroutine ‘initl’ for the subspace of |¢o(k + q)) first. This
subroutine is also a prerequisite to set up the Hamiltonian matrix in the basis of
|¢o(k 4+ q)) which is done in ‘smatel’.

There are three nested loops in the subroutine ‘inispi’ corresponding to the sum
over classes of o(k) (‘do 20’), the sum over all ‘nclassmember’ members for a
given class (‘do 30’), and to the Fourier transform of the spatial S* operator with
momentum ¢ (‘do 40”). After a class representative ‘idw0’ and its coeflicient ‘psi0’
for the ground state vector 1)o(k) are read in from file, the corresponding members
for the class represented by ‘idw(’ are generated along with their respective phases
‘isignr’ and ‘isigni’ in the subroutine ‘symlin’. Since the S* operator is applied to each
basis state individually there is a loop over all ‘nclassmember’ states represented by
‘iddw0’. Finally, in the innermost loop the S* operator acts on each site resulting in
nspin=+1 depending on the spin orientation at site ‘j3-1°. It also picks up a ‘phase’
(=-2.0%pi*(j3-1)*jscth) corresponding to the position of the spin in the cluster. Since
S”q is a diagonal operator, the state it acts on (‘jbradw’) stays unchanged. Then,
‘tbradw’ enters the call for the search routine which allows only representatives of
a given class in the new subspace of ¢do(k + q) to contribute to the coefficients of
do(k + q) (‘phi0’). However, for off-diagonal operators, such as the hole operator
discussed above or spin operators ST, the basis state which is acted upon is changed
into another one. That new state is then the one which enters the call for the search
subroutine instead of ‘jbradw’. The if-statement following the call for the search

routine guaranties that only the ‘nclasl’ contributions to |¢o(k + q)) corresponding
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to the actions of the operator on the initial state are included in the coefficients
‘phi0(my)’. Here ‘my’ is the output index of the search routine labeling the position
of the class representative which is multiplied by the coeflicient ‘phi0(my)’.

Again, it might be helpful to write the loops which occur in ‘inispi’ as three

separate sums in terms of the symbols used in this subroutine, e.g.

nclas0 nclassmember ns

: PsiOm1 : . :
hi0) = - 2-pi-jscthl-(j3—1
[phi0) mgl nclassmember ICZ::I jSZ::l exp (i 2 pi- jsc ( )/ns)x
x84 [idwl(le)), (2.23)

where psiOy,; is the state ‘psi0’ corresponding to class ‘m1’, and

nclas0 nclassmember ns
> (= do20), > (- do30), > (— do 40). (2.24)
ml=1 le=1 j3=1

As a final comment on the subroutine ‘inispi’ we want to indicate that it is
suitable to produce off-diagonal static averages for a given operator which leads out
of the subspace of ¥y(k), i.e. (S S7 4 S757) or (cl¢;). The modification which
needs do be applied to the above subroutine i1s to store the contributions to ‘phi0’
from different pairs (i,j) separately, e.g. ‘phi0(my)’ — ‘phi0(j3,my)’. Once all
‘phi0(j3,my)’ have been obtained the corresponding off-diagonal correlations can be
generated by adding three nested loops at the end of the routine, e.g.

do 3211 = 1.ns
do 3212 = 1.ns
do 31 m1 = 1,nclasl
corr(11,12) = corr(11,12) 4+ phiO(11,m1)*conjg(phi0(12,m1))
31 continue
32 continue

Now, we turn to the final subroutine ‘strucfac’ which converts the moments a,
and b,, into dynamical correlation functions using Eq. (2.21). It is here assumed that

these moments have been produced by applying Lanczos iterations to the seed state
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|po(k 4+ q)) as discussed above. In ‘strucfac’ the Green’s function ‘green’, G(q,w),
is constructed recursively from the a,’s and b,’s. Then, the imaginary part is taken
to produce the corresponding dynamical observable. This program is absolutely
generic and independent of what dynamical quantity is calculated.

The only output parameter of this routine is the frequency dependent dynamical
correlation function ‘dyncorrel’. Input parameters are the number of cluster sites
‘ns’, the ground state energy ‘gsenergy’ of the system obtained in the initial Lanczos
run, the moments a, and b, (here : ‘an’ and ‘bn’), and the number of Lanczos
iterations ‘itm’ which have been applied to the seed state in the Lanczos subroutine

of the dynamics program.

This subroutine converts the moments ‘an’ and ‘bn’ into a frequency dependent
correlation function

ns : number of sites, dyncorrel : dynamic correlation function

gsenergy : ground state energy, an,bn : moments produced in ‘lancsz’

itm : number of poles, omega : energy transfer

o O o o 0

subroutine strucfac(ns,dyncorrel,gsenergy,an,bn,itm)
real dyncorrel(800),an(250),bn(250)
complex x,green

epsilon=0.1
omega=-4.0
pi=acos(-1.0)

do 20 i=1,800
x=-omega+cmplx(0.,1.)*epsilon +gsenergy
green=1/(x-an(itm))
do j=(itm-1),1,-1
green=1.0/(x-an(j)-green*((bn(j+1))**2))
end do
dyncorrel(i)=bn(1)*bn(1)*dimag(green)/(ns*pi)
omega=omega+0.01
20 continue

return
end
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Here, frequencies are measured with respect to the ground state energy ‘gsenergy’
which resembles the experimental situation (e.g. Neutron scattering in the case of
spin dynamics) where the energies measured are actually energy differences , or
better energy transfers, between the ground state and excited states to which the
operator (here S?¢) couples. The same holds for the momenta : q is the momentum
transfer between the ground state (with momentum k) and all excited states (with
momentum k + q). The excited states with momentum k + q are not neccessarily
degenerate, since they may differ in various other quantum numbers, like e.g. spin-
rotation, spin-inversion, spatial parity ... .

Let us shortly discuss the details of the subroutine ‘strucfac’. The poles in the
Green’s function (Eq. (2.15)) are replaced by Lorentzians of the form 6(w) — %ﬁ
with a half-width given by ‘epsilon’. ‘epsilon’ can be adjusted to make the spectrum
sharper or smoother. Typically, a broadening of 10 — 25% of the unit of energy (e.g.
t or J in the t-J model) is used. In this context it is important to keep the frequency
steps (omega=omega+0.01) about an order of magnitude smaller than ‘epsilon’ to
guaranty that no precision is lost in w-space.

There are two nested loops in ‘strucfac’. The outer loop (‘do 20’) goes through
the arbitrarily closely spaced frequency steps. Here, we have chosen steps of ‘0.01J°.
In principle, there is no limit in this method to the resolution in w-space. The
“coarseness” of the discretization in w should be chosen in balance with the ‘ep-
silon’ value as discussed in the previous paragraph. In the inner loop, the a, — b,
representation of the Green’s function (Eq. (2.21)) for a given frequency is built

up iteratively starting with the highest pole and going backwards (green=1.0/(x-

an(j)-green*((bn(j+1))**2))). Then, the imaginary part of this function is taken
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subsequently in the outer loop, and weighted with the factor bn(1)*bn(1) which
corresponds to the numerator in Eq. (2.21). This procedure is repeated for each
w-step.

Sometimes it is necessary to calculate moments of the distribution /(q,w). This
can be done very easily. For example, the integral over frequency of the spectral

function gives,

| det(a.w) = X el + @)l Oq oI = ($o(IOL 4 Oalo(k)),  (2.25)

n

where we have assumed that the eigenvectors of the Hamiltonian are normalized to
one, i.e. 3, |ci|* = 1. Eq.(2.25) is a generic expression for some of the “sum-rules”
frequently mentioned in the literature for various operators Oq. Let us for example

consider the sum-rules for the spin operator Oq =5"(q) = >, exp(—1q- rj)Ser :

[$7(aw)de = 7(8(a)$*(~a)). (2.26)
/ §°(q, w)w ldw = gx(q), (2.27)
[ 87 (@ whode = (S (a), HIS*(~q)), (2.28)

where the a=x,y,z refers to the spin components, and S*“(q,w) represents /(q,w)
for the special case of the spin operator..

These sum-rules serve as a nontrivial check to verify whether the dynamic
correlation functions have been obtained correctly. E.g.  for the Heisen-
berg chain the sum-rule for the static spin-spin correlation functions gives
S”(q) = ZJN:1 exp(inx rj)<S%)Ser> = 1 [S"(q,w)dw as we will verify below for a fi-
nite cluster. Naturally, there are very similar sum-rules associated with every dy-

namic correlation function of interest such as the optical conductivity or the spectral

function.
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Let us now consider the example of a 16-site spin-1/2 Heisenberg chain with peri-
odic boundary conditions (Sxy4; = 51) to illustrate the use of the routines presented
above and to show that the sum-rule for the spin structure factor works. In Fig.
2.7 we show (a) the real-space spin-spin correlations, (b) the Fourier transform of
this quantity, which is the static spin structure factor, and finally (c) the dynamical
spin-structure factor for this particular cluster.

In Fig. 2.7(a), we observe spin correlations that are typical for an antiferromag-
netically ordered phase, i.e. with sign changes as a function of distance indicating
a tendency towards | T|T|T] ...)-ordering. Notice, however, that we do not have
the strict Néel order ((S7S?) = 3(—1)"7) observed for the Ising model, but rather
a power-law decay of the form (§7S?) oc (—1)""//|i — j| (actually there are small
logarithmic corrections to this behavior).

In Fig. 2.7(b), the Fourier transform of the real-space spin-spin correlations is
shown. It is clearly peaked at ¢ = 7 which is the antiferromagnetic wave vector in one
dimension. This peak at ¢ = 7 indicates the dominant presence of ‘backscattering’
processes which give rise to antiferromagnetic instabilities.

Finally, in Fig. 2.7(c) we show the dynamical structure factor for the 16-site
chain. This quantity is momentum and frequency dependent. In the continued
fraction expansion, S(¢,w) has been given a finite frequency broadening of 6 = 0.1.J.
As can be seen from this figure, there are always a finite number of discrete peaks for
a finite lattice, even if in the bulk limit a continuous density of states is expected as is
the case for the spin-1/2 Heisenberg chain. Thus, only by looking at the dynamical
structure factor on lattices of increasing length (finite scaling analysis) we can tell

whether there should be a continuum in frequency space in the thermodynamic limit.
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Figure 2.7: Spin correlation functions for the 16-site spin-1/2 Heisenberg chain. (a)
z-component of the real-space spin-spin correlation function, (b) static spin structure
factor in momentum space, (c) dynamical spin-structure factor.
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Indeed, for the spin-1/2 Heisenberg chain we found that, e.g. in S*(q = 7, w), there
are N/4 dominant poles for an N-site chain. Thus, in the bulk (N — oo) there will

be an infinite number of infinitesimally narrow spaced poles for this quantity.

Table 2.2: Real-space spin-spin correlation functions and their Fourier transforms
for the 16-site spin-1/2 Heisenberg chain

e

(S5S7)  q  S™(q) =1 [S™(q,w)dw

0 025 0 0
1 —0.149 7/8 0.036
2 0062 /4 0.075
3 —0.053 3r/8 0.118
4 0038 /2 0.17
5 —0.036 57/8 0.236
6 003 3r/4 0.331
7 —0.031 7rx/8 0.498
8 002 r 1.073

The reader is cautioned that for one-dimensional systems with a continuous
symmetry - like the plain Heisenberg model - there is no long-range order in the
strict sense, since all correlation functions decay to zero. However, in this particular
case they decay very slowly (as a power law with distance ), and thus we can speak
of quasi long-range order. In table 2.2 we list the numerical values for the spin-spin

correlation functions and their Fourier transforms. As can be seen by integrating
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the dynamical structure factor shown in Fig. 2.7(c) over all w-space, the sum-rules
given in Eq. 2.26 are satisfied.

Another useful check to determine whether the dynamic correlations have been
generated accurately is the position of the first excited state in w-space, e.g. the
position of the first peak in the spectrum (Fig. 2.7(c)). The w-value of the lowest
peak should be located precisely at the difference between the lowest energy eigen-
value at momentum k 4 q and the ground state energy, i.e. w = Eﬂ_l_q — Ey, where
k is the ground state momentum, and q 1s the momentum of the dynamic operator.

Due to the finite size of the clusters which can be studied numerically, there is
always a gap at the bottom of the spectrum for a finite cluster. It then becomes
crucial to study the scaling of this gap with system size in order to determine whether
there is a finite correlation length associated with the system.

If higher moments of the distribution are needed, the following relation holds,

| dewr 1(a.0) = (0101 (Oglin(k)) S Ieh (B, — EoYs  (2:29)

where all the necessary information to calculate it was obtained before when the

spectral function was evaluated (poles and intensities) .

2.7 Conclusions

To end this section about the Lanczos method, we will describe a recent at-
tempt to increase the size of the clusters that this technique can reach. The idea
is that for some particular cases it may occur that the wave function of the ground
state expanded in some working basis that is selected for the problem (schematically

|o(k)) = 3., ¢m|m)), may contain states with very small weight ¢,,. Then, it could
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be possible to neglect those states in the basis, and still get accurate enough results
for the ground state properties. These types of ideas (that we call “truncation”
method) have been recently used in Quantum Chemistry by Wenzel and Wilson[32]
and in the context of correlated electrons by Riera and Dagotto[33]. For the partic-
ular case of the t — J, model the approach works very well, and clusters of 50 sites
can be easily studied keeping only a few hundred thousand states in the basis (which
is a negligible percentage of the total basis set size). However, when the method
1s applied to the t —J model its convergence to the ground state energy becomes
slow (logarithmic) as the size of the basis is increased. To describe properly the
strong quantum fluctuations of the spin background most of the $*-basis is needed.
Then, the truncation technique is very accurate for particular Hamiltonians while
for others it only provides a rough estimation of the ground state properties. This
approach should be seriously considered every time a new problem that needs com-
putational work appears. In particular, it seems suitable for problems with gaps in

the spectrum (like a spin-gap).



CHAPTER 3

ANTIFERROMAGNETICALLY INDUCED PHOTOEMISSION

BAND IN THE CUPRATES

A consequence of strong antiferromagnetic (AF) correlations in models of high
critical temperature (high-Tc) cuprates is the appearance of quasiparticle-like fea-
tures in photoemission (PES) calculations above the Fermi momentum pp which
would correspond to weakly interacting electrons. This effect, discussed before by
Kampf and Schrieffer (Phys. Rev. B 41, 6399 (1990)) using diagrammatic tech-
niques, is analyzed in this chapter using computational techniques in the strong
coupling regime. It is concluded that weight above pr should be observable in
experimental PES (w < 0) data for underdoped high-T. cuprates, while in the
overdoped regime it will be likely hidden in the experimental background. In the
intermediate doping region the signal is weak and at the verge of observability. The
order of magnitude of our results is thus compatible with recent experimental data
by Aebi et al. (Phys. Rev. Lett. 72, 2757 (1994)) for Bi2212 at optimal doping.
The results described in this section have been published by S. Haas, A. Moreo, and

E. Dagotto in Phys. Rev. Lett. 74, 4281 (1995).

3.1 Magnetic Correlations in High-T. Compounds

The importance of AF correlations in the normal and superconducting states

of the high-Tc cuprate materials is under much discussion. While recently most

86
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of the debate has concentrated on the symmetry of the superconducting order pa-
rameter, studies of the strength of the AF correlation length, {47, in the normal
state are still crucial to test these ideas. A key issue is how large 47 should be to
produce observable effects in experiments for the high-Tc compounds. NMR studies
in the normal state of optimally doped YBa;Cu30694 (YBCO) suggest ar ~ 2a
(where a is the lattice spacing).[34] Naively, this correlation seems too small to be
of relevance. On the other hand, recent PES experimental results by Aebi et al.[35]
on BiySryCaCuy 05 (Bi2212) at Tc=85K, using sequential angle-scanning data ac-
quisition to obtain PES intensities within a narrow energy window near the Fermi
energy Ep, have been reported to provide evidence for antiferromagnetically induced
spectral weight above pp (w < 0). Are these two results compatiblel’

To analyze Aebi et al.’s interpretation of their PES data, let us recall the intuitive
physics involved. At half-filling, the magnetic unit cell of the CuQO, planes is enlarged
by the long range AF order in the ground state. This effective reduction in the size
of the Brillouin zone (BZ) has interesting implications for PES experiments, as was
discussed by Kampf and Schrieffer as part of their “shadow band” scenario.[56]
For example, along the diagonal py = p, = p, and assuming long-range order, the
quasiparticle-like peaks at the top of the valence band and at momenta p; = (p, p)
and p2 = (7 — p, 7 — p) should appear at the same energy location, for any value of
p. The coherent PES peaks observed above pp are induced by strong correlations
and do not exist for weakly interacting fermions.[56]

How does this antiferromagnetically induced PES signal evolve as {45 1s made
finite by the effect of hole dopingI It is likely that its intensity will smoothly diminish

when the system is doped away from half-filling. Since in optimally doped Bi2212
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the AF correlation length in the CuO, planes should be similar to that of optimally
doped YBCO (because they should have the same in-plane hole density), a natural
question arises: can a small correlation length (~ 2a) produce observable weight in
PES experiments above pr comparable to those reported by Aebi et al.[35]T On one
hand, recent calculations[37] carried out in an AF background, which reproduced
the flat band features near p = (7,0) observed in Bi2212, suggest that a short £45
can appreciably influence some experimental quantities. On the other hand, since
the actual experimental PES signal for Bi2212 (Fig. 3.1) is weak, concerns may arise
about the interpretation of the data. Thus, a theoretical quantitative calculation in
strong coupling is needed to compare PES spectra and {4r with experiments, and
to decide whether Aebi et al.’s PES data are compatible with models of correlated

electrons having PES weight above pr.

3.2 A(p,w) for the Hubbard Model

Here, this issue 1s explicitly addressed. PES spectra and spin correlations are
calculated for electronic models expected to describe the CuO; planes. Consider
first the standard two dimensional (2D) one band Hubbard model

H=-t Z (c;rUng +hc)+U ZniTnilv (3.1)
<ij>o i
in the standard notation.

We simulated this model numerically using Quantum Monte Carlo (QMC) tech-
niques. In order to extract the dynamical spectral function A(p,w) corresponding
to the removal or addition of an electron with momentum p to the system, the maxi-

mum entropy (ME) technique was used.[39] We remark that using this low-resolution
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Figure 3.1: PES intensity in Bi2212, as reported by Osterwalder et al. (Ref.[35]).
Their method produces PES intensity at constant energy for all momenta, while
conventional methods provide complete PES energy distribution curves at a few
locations in the BZ. Each solid line corresponds to a fixed energy scan starting at
the bottom at 0.3 €V above Ep, and arriving at the last top line at Er. The spectra
were measured at a polar angle of 39°, and for azimuthal angles spaced 1° apart
beginning near the I'M line and ending near the I'X line. The “5 x 1”7 band is
explained in the original text Ref.[35] and it is of no concern to us. We thank P.
Aebi and J. Osterwalder for providing us with these unpublished data.

method we will not be able to distinguish between sharp quasiparticle-like peaks lo-
cated at the top of the valence band, from the robust incoherent contribution to
A(p,w). Thus, in this discussion of the 2D Hubbard model only the strength of
the spin correlations, and their influence on the integrated PES signal will be ad-
dressed. This signal is calculated from the percentage of spectral weight below the
chemical potential ; at momenta along the diagonal py = py in the BZ with respect
to the total intensity (adding PES and inverse PES) which for the Hubbard model
satisfies the sum rule [T°° dwA(p,w) = 1 at all dopings. It will be shown that the
momentum dependence is crucial in our analysis.

Before describing the computational results, let us define when a theoretically

calculated PES signal can be predicted to be “observable” in an experiment. PES
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spectra have large backgrounds, whose origin and shape are a matter of discussion,
superimposed on the actual relevant signal. This background depends on the mo-
mentum, and also changes from sample to sample with fluctuations as large as 50%.
Since the background is convex, the natural requirement for a PES theoretically
calculated signal to be observable is that the combination background-signal pro-
duces a local maximum (i.e. a peak in the measured intensity).[40] From the data
obtained on the insulating compound Sr,CuO;Cl;y, and the intensity of the signal
at the last point where the dispersion is observed i.e. p = (0.7x,0.77), it is con-
cluded that a peak with an intensity of roughly 10% of the largest signal (located at
p = (0.57,0.57)) would be at the verge of being detected.[40] This is the criterion
followed here to label a result as “observable”.

The choice of coupling is important in our search for PES weight above pp. For
example, we observed that working on an 8 x 8 cluster, at U/t = 4, half-filling and
temperature T = t/4, the percentage of PES spectral weight at p = (37 /4,37 /4),
i.e. the next available momentum after (7/2,7/2) on this cluster, is very small
(less than 5% of the total), even though the spin correlations show clear indications
of long-range order. Then, the actual value of the local moments is as important
as the AF correlation length for the effect we are investigating. Since evidence has
recently been given that another feature induced by antiferromagnetism,[41] namely
the “hole” pockets, may be washed out by temperature effects in QMC simulations
at U/t = 4, we consider this coupling to be too small for our purposes. Thus, here
the analysis was restricted to U/t = 8.

In Fig. 3.2, A(p,w) at T =1/2 is shown.[42] It is difficult to reduce T due to

sign problems, but nevertheless this temperature allows us to study the PES signal
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Figure 3.2: A(p,w), evaluated using QMC and ME techniques, for the 2D Hubbard
model at U/t = 8, T = t/2 on an 8 x 8 cluster, at several densities (n). The momen-
tum label varies along the diagonal in the BZ in units of 7 /4, and the percentages
correspond to the integrated PES part of the spectral weight with respect to the
total intensity (=1). The energy is in units of t.

above pr at different correlation lengths as the density is changed, which is the
main purpose of this study. At half-filling, (n) =1, x is located in the gap. The
percentage of total PES spectral weight is shown for each momentum. A nonzero
PES signal above the non-interacting Fermi momentum is clearly visible, and at
p = (37/4,37/4) it carries ~ 23% of the total weight. This result is very similar
if the temperature is reduced to T = t/4. Note that for a pure spin-1/2 antiferro-
magnet the weight at p = (7/4,7/4) and p = (37/4,3%/4) should be identical at
this density, but for a Hubbard model at finite U/t spin-density-wave mean-field
approximations[65] show a reduction of the intensity of the PES signal above pg
with respect to the Heisenberg limit.[44] Away from half-filling, at (n) = 0.87, the

amount of weight at p = (37/4,37/4) is reduced to ~ 10%, which is still visible in
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the scale of the figure, although it is rather weak. The height of the peak, as a
percentage of the peak height at p = (7/2,7/2) and half-filling, is about 15%.

At this point, it can be argued naively that the effect reported in Fig. 3.2 may
only be evidence for the presence of the lower Hubbard band instead of antiferro-
magnetism. Actually, if the summation over momenta is carried out in Fig. 3.2 to
construct the density of states at each doping level, it can be shown that aside from
an expected redistribution of weight as the density changes, the two large bands in
the spectrum are not much affected by doping. Thus, even at very low electronic
densities where antiferromagnetism has clearly vanished, there is spectral weight
below ; forming the lower Hubbard band. However, for (n) ~ 1, i.e. with antiferro-
magnetism in the ground state, the weight below p tends to be distributed evenly
below and above pg, while for the case of (n) ~ 0.70 when antiferromagnetism has
virtually vanished the situation is drastically different with almost all of the PES
weight located below pp. Thus, the momentum dependence of A(p,w) is the key
point to distinguish between an effect induced by AF correlations and an effect merely
caused by the lower Hubbard band.

To relate these results with experiments, and to provide further support for our
interpretation, in Fig. 3.3(a) we show the numerically calculated spin correlations.
At (n) = 1, the correlation is robust (although it decays slowly to zero due to tem-
perature effects), while at (n) = 0.70 it is clearly very small. At an intermediate
density (n) = 0.87, {45 is between one and two lattice spacings, resembling the ex-
perimental situation in YBCO, and presumably also in Bi2212, since both are at
optimal doping.[45] Comparing Figs. 3.2 and 3.3 it is clear that the QMC PES signal

above pr is correlated with the presence of antiferromagnetism in the spin correla-
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Figure 3.3: (a) Spin-spin correlation 4<SiZSiZ+j>(—1)|j| vs distance, j = |j|, for the 2D

Hubbard model calculated using QMC at T =t/2, U/t = 8, and several densities

on an 8 x 8 cluster; (b) Spin-spin correlations as defined in Fig. 3.3(a), for the 2D
t-J model calculated using exact diagonalization techniques on a 4 x 4 cluster with
two holes, at several couplings.

tions. Again, the momentum dependence of the spectral weight is crucial for our
interpretation of the data. For this particular calculation we conclude that a doping
of 25% holes makes the weight induced by antiferromagnetism almost negligible,
while at 12% doping the effect is still observable. Note that it is not necessary to

have a large spin correlation length for the observation of weight above pr. {47 ~ 2a

seems to be enough.

3.3 A(p,w) for the t-J Model

Thus far, our QMC analysis of the Hubbard model does not allow us to separate
the actual sharp quasiparticle-like peak at the top of the valence band (which forms
the band discussed in Ref.[56,35]) from the rest of the incoherent contribution at
larger binding energies. To clarify this situation we need to study strongly correlated

electrons with a technique that provides more accurate dynamical information than
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ME. For this purpose, here we consider Exact Diagonalization (ED) techniques
applied to the well-known 2D t — J Hamiltonian[46] defined by
Hy = —t Z (&t &, +he)+J Z (S;-S; — ininj), (3.2)
<ij>o <ij>
in the standard notation.

The restriction of the Exact Diagonalization method to small clusters should
not be a major problem in calculations where {47 is very small. To increase the
momentum resolution along the diagonal in the BZ, we combined the results for
the 16 site cluster (providing momenta (0,0), (7/2,7/2), (7, 7)) and the 18 site clus-
ter (containing (7/3,7/3),(27/3,27/3)).[47] The geometry of tilted square clusters,

such as the v/18x+/18 lattice, is discussed in the introduction of chapter 2.

2D t-J, PES, J/t=0.4
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Figure 3.4: PES A(p,w) evaluated using exact diagonalization techniques for the
2D t-J model, at J/t = 0.4 on 4 x 4 and /18 x /18 clusters. The densities are

shown in the figure. We assumed t = 0.4eV, and provided a width 6 = 0.1t to the
peaks. The momenta are indicated, and the relevant peaks are shaded.

In Fig. 3.4, the PES A(p,w) spectrum is shown for the t-J model. J/t = 0.4 was

selected to model the cuprates,[46] but we checked that the results are similar in
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the range between J/t = 0.2 and J/t = 0.8. As expected, at half-filling the largest
peak near the chemical potential (quasiparticle) is obtained at p = (7/2,7/2). In-
creasing the diagonal momenta away from it, a considerable amount of spectral
weight induced by {45 exists as was observed in early studies of the t-J model.[48]
Moving away from half-filling into the subspace of two holes (close to (n) ~ 0.88)
the dominant peak remains at p = (7/2, 7/2) within our momentum resolution. At
(7/3,7/3) the quasiparticle strength is still large and coherent. At p = (27/3,27/3)
the peak seems now broader in the scale used, although its integrated spectral weight
remains close to that of p = (7/3,7/3). The height of the peak at p = (27/3,27/3)
as a percentage of the largest peak located at p = (7/2,7/2) is 15-20% i.e. within
the “observable” region defined before. Finally, at density (n) = 0.77, the result
resembles that of a weakly interacting system with a Fermi momentum close to
p = (7/3,7/3), above which the signal is too weak to be observable in PES experi-
ments. Then, we believe that weight above pr can be observed at (n) ~ 0.88 but no
longer at density (n) ~ 0.77. To make contact with experiments it is again necessary
to consider the corresponding spin correlations shown in Fig. 3.3(b). At half-filling,
Ear is clearly larger than the lattice size. At (n) ~ 0.88, a crude exponential fit of
the spin correlation vs. distance gives {4r ~ 1.5a (similar to that of YBCO and
Bi2212 at optimal doping), while at (n) ~ 0.77, £45 is less than one lattice spacing.
Then, we arrive to the conclusion that for a real material with {4 ~ 2a the an-
tiferromagnetically generated PES weight, although weak, may still be observable
above the background.

In Fig. 3.5, A(p,w) is shown at (n) ~ 0.88 using an enlarged energy scale. The

dispersion of the sharp peak (I) discussed before in Fig. 3.4, has a bandwidth
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Figure 3.5: PES A(p,w) for the t-J model at (n) ~ 0.88, J/t = 0.4, clusters of 16
and 18 sites, and expanding the energy scale to observe the two peak structure. We

use 6 = 0.25¢ and t = 0.4eV.

of order J, while at higher energies a considerable amount of spectral weight is
found contributing to the bulk of the valence band (II). Peak (I) may be smoothly
connected to the bands discussed by Kampf and Schrieffer in the weak coupling

limit.[56]

3.4 Conclusions

Summarizing, in this section an analysis of the PES spectra in the 2D Hubbard
and t-J models at several densities was reported. If these models reproduce the
physics of the high-Tc compounds, then we conclude that antiferromagnetically
induced photoemission weight should be observable even for materials with spin
correlations lengths of only a couple of lattice spacings, as in Bi2212 at optimal

doping. This 1s compatible with the experimental results of Fig. 3.1. However, we
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found that this regime is at the verge of observability and thus our results, based
on rough models and order-of-magnitude estimations, cannot uniquely establish
the validity of Aebi et al.’s interpretation of their experimental data. We have
only shown that the strength of their signal and ours are similar and thus there is
compatibility between theory and experiments. We expect that the PES signal above
pr should no longer be visible above the large experimental background at dopings
larger than optimal (~ 15%). To gather further evidence that the experimental
signal is indeed caused by antiferromagnetism we believe that it is necessary to carry
out PES experiments as a function of hole doping. We predict that the strength
of the signal above pr should increase as the system moves away from the optimal
doping level towards half-filling. A possible candidate for such a study is YBCO
with a critical temperature of about 60K. Another alternative within the Bi2212
family would be to consider BiySryCay_Lu,CuyOgys and BiySry_(La,CaCuyOsgys

which are underdoped.[49]



CHAPTER 4

QUASIPARTICLE DISPERSION OF ONE-BAND ELECTRONIC

MODELS

In this chapter, the spectral weight A(p,w) of the two dimensional t —J and
Hubbard models is calculated using exact diagonalization and quantum Monte Carlo
techniques, at several electron densities 0.5 < (n) < 1.0. The photoemission (w < 0)
region contains two dominant distinct features, namely a low-energy quasiparticle
peak with bandwidth of order J, and a broad valence band peak at energies of order
t. This behavior persists away from half-filling, as long as the antiferromagnetic
(AF) correlations are robust. The results give support to theories of the copper
oxide materials based on the behavior of holes in antiferromagnets, and also provide
theoretical guidance for the interpretation of experimental photoemission data for
the cuprates. The results presented in this chapter have been published by A. Moreo,

S. Haas, and E. Dagotto in Phys. Rev. B 51, 12045 (1995).

4.1 Introduction

Angle resolved photoemission (ARPES) techniques applied to the high temper-
ature superconductors have produced interesting data that introduces important

constraints on theories for the copper oxide planes. Recently, it has been shown[50]

that the hole-doped compounds Bi;SryCaCu;Og, BiySroCuOs, YBay;CuszOr, and

98
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YBa,Cu,05 exhibit universal properties likely induced by the behavior of carri-
ers in their common CuQO; planes. In particular, it has been reported that the
quasiparticle dispersion has a small bandwidth governed by an energy scale of the
order of the exchange J of the Heisenberg model (~ 0.15¢V). In addition, in the
vicinity of momenta Y = (0,7) and X = (x,0), the dispersion is anomalously flat.
These results give support to theoretical ideas based on strongly correlated elec-
troms, since (i) it is well-established[51] that at half-filling the spectral function of
a hole in an antiferromagnet contains a sharp quasiparticle peak at the top of the
valence band spectra with a bandwidth of order J, and (ii) careful studies of the
fine details of the hole dispersion in one band models have revealed the presence of
flat regions near the X and Y points in momentum space.[52-55] The existence of
these two features is a direct consequence of the presence of strong correlations and
antiferromagnetism in the cuprates.

It is reasonable to assume that the behavior of holes in systems with long-range
antiferromagnetic order will not change qualitatively as the density of holes is in-
creased away from half-filling, as long as the antiferromagnetic correlation length
¢ap remains large. Theories based on this assumption have been proposed.[56,57]
In particular, in Refs.[52,57] it was shown that it is possible to reproduce many
of the anomalous properties of the cuprates, including the presence of a d-wave
superconducting state and the existence of an optimal doping, with the econom-
ical assumption that the sharp quasiparticle peak observed at half-filling at the
top of the valence band remains robust as the electronic density decreases to phe-
nomenologically realistic values. This assumption (i.e. approximate rigidity of the

quasiparticle dispersion with doping) received support from recent calculations ad-
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dressing the presence of “shadow bands” in the cuprates.[58] This work has been
discussed in the previous chapter. The rigid band hypothesis has also been studied
by other authors.[75] On the experimental side, recent ARPES results by Aebi et
al.[60] have shown that features induced by the AF correlations at half-filling are
also present at optimal doping. Since the closest structure to the Fermi level in
A(p,w) is likely to dominate the low temperature properties of the model, then it
is important to establish theoretically whether the quasiparticle peaks observed at

half-filling survive in the presence of a finite density of holes.

4.2 Photoemission Spectra in the t-J and Hubbard Models at

Half-Filling

In this chapter we discuss our analysis of the spectral weight for both the 2D
t —J and Hubbard models using exact diagonalization (ED) and quantum Monte
Carlo (QMC) methods, supplemented by Maximum Entropy (ME)) techniques, and
carried out at several densities. A(p,w) is shown to contain a two-peak structure,
with dispersing features near the top of the valence band dominated by the scale
of antiferromagnetism J, while a secondary broad structure appears at energies of
order t. We discuss the range in parameter space where this behavior is to be
expected, and its influence on the physics of carriers in the cuprates. However,
note that recent QMC results have reported the presence of only one PES peak
for the Hubbard model at both half-filling[61] and finite hole density.[54] We found
that the disagreement with our present results is avoided once the influence of finite

temperature effects is considered, and a more sophisticated ME method is used.
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Figure 4.1: (a) Spectral weight A(p,w) of the 2D t —J model at J/t = 0.4 using
clusters of 16 and 18 sites along the diagonal in momentum space. The o-functions
have been given a width ¢ = 0.25¢ in the plots; (b) position of the two dominant
peaks in A(p,w) as a function of momentum. The area of the circles is proportional
to the intensity of the quasiparticle peak they represent. The error bars denote the
width of the peak as observed in Fig. 4.1(a) (sometimes to a given broad peak several
poles contribute appreciably). The full squares at w ~ —4t represent the center of
the broad valence band weight, and the area of the squares is not proportional to
their intensity.

The technical details of the present computational study, as well as the Hamil-
tonians of the Hubbard and t — J models, are the standard ones, unless otherwise
stated. In Fig. 4.1(a) , A(p,w) is shown for the t —J model at half — filling
and J/t = 0.4 using the ED technique applied to 2D clusters with 16 and 18 sites.
The combination of these clusters allows enough resolution in momentum space to
quantitatively analyze the dispersion of the main features in the spectral weight.
The present results have been obtained using approximately 100 iterations in the
standard continued fraction expansion (CFE) method to obtain dynamical proper-
ties using the Lanczos technique.[51] This technique has been discussed extensively
in chapter 2.6 of this thesis. However, the figure shows that only a small number of

poles are dominant. It is clear that near the Fermi energy, (w = 0), there is a robust
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peak that weakly disperses in the scale of the figure. Remnants of this low-energy
peak exist at momenta (0,0) and (7, 7), in the latter barely visible to the eye (but
its intensity and position can be easily studied with the CFE approach mentioned
above). In Fig. 4.1(b) , the position of the low-energy peak is shown with full
dots, with the convention that the area of the dot is proportional to the intensity
of the peak. The bandwidth of this sharp quasiparticle-like peak is ~ 0.8t = 2J,
in excellent agreement with our expectations based on previous ED[51] and Born
approximation[53] calculations. The flat region near (7,0) is also visible in the fig-
ure. From Fig. 4.1(a) it is clear that additional PES spectral weight in A(p,w) is
located at higher energies |w|. As discussed before in the literature, the strong cor-
relation effects force the hole quasiparticle to carry only a fraction of the integrated
weight,[62] and thus the presence of considerable incoherent intensity deep in energy
is reasonable. A rough estimation of their position is shown in Fig. 4.1(b) (open
squares).[63] This feature is not relevant for the low temperature behavior of the
model which is dominated by the quasiparticle peak at the top of the valence band.

Before describing the density dependence of our results, let us clarify the im-
portance of finite size effects in Fig. 4.1, as well as the differences between our
results and those of previous QMC simulations.[54,61] To address both issues simul-
taneously, we have carried out an extensive QMC simulation of the 2D Hubbard
model. The results reported here correspond to U/t = 10 (i.e. the strong coupling
regime where the model should behave similarly to the t — J model), temperature
T =t/4, and using ~ 10° sweeps over the entire lattice to reduce the statistical
errors. Here we use the “classic” ME technique.[64] This method gives a closer fit

to the Monte Carlo data than the variant used in Ref.[54,61] and therefore resolves
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Figure 4.2: Spectral weight A(p,w) of the 2D Hubbard model obtained with the
QMC method supplemented by Maximum-Entropy, on an 8 x 8 cluster, U/t = 10,
and T = t/4.

more structure. The analytically-continued A(p,w) obtained at half-filling on an
8 x 8 cluster is shown in Fig. 4.2 at several momenta. The results are both qual-
itatively and quantitatively similar to those obtained for the t —J model in Fig.
4.1 , and also in good agreement with ED studies for the Hubbard model.[65] Two
peaks in the PES region are clearly identified for all momenta. The peak structure
resolved in this figure is a clear improvement with respect to Fig. 3.2 due to the
lower temperature (T=t/4) used here. From their position it can be shown that
the bandwidth of the peak at the top of the valence band is of order J, in excellent
agreement with our previous discussion. The second broader feature observed in the
ED study of the t — J model is also present in the QMC simulation results. Studies
at larger U/t couplings in the Hubbard model and in the region 0.2 < J/t < 0.8 of
the t —J model show basically the same features. Then, here it is concluded that

the qualitative physics of both models is very similar in the strong coupling region,
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where a A(p,w < 0) with a double-peak structure is observed, as properly assumed

in previous analytical studies.[56,52,66]
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Figure 4.3: Same as Fig. 4.1 but for density (n) ~ 0.88 (i.e. two holes on the 16
and 18 sites clusters). In (a) the PES intensity is shown with a solid line, while
the IPES intensity is given by a dotted line. The chemical potential is located at
w = 0. In (b) the full and open circles represent the PES and IPES intensities,
respectively, of the peaks the closest to the Fermi energy. Their area is proportional
to the intensity.
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4.3 Photoemission Spectra in the t-J Model away from Half-Filling

Let us now discuss our results away from half-filling. In the relevant regime of
density for the high-Tc superconductors, namely in the vicinity of “optimal doping”
(n) ~ 0.85, the QMC+ME method at large U/t produces stable results only at
temperature T = t/2 which is too high to resolve the two peak structure even at
half-filling. Thus, in this density regime only the ED results are reliable. In Fig. 4.3,
ED data at density (n) ~~ 0.88 are shown (two holes in the 16 and 18 sites clusters).
In this case {45 is approximately two lattice spacings.[58] The PES results along

the diagonal in momentum space present structure very similar to that discussed at
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half-filling. The low energy peak is well-defined at all momenta, even those above the
naive non-interacting Fermi momentum located near (7 /2, 7/2), and still it disperses
with a bandwidth of order J. The large accumulation of weight at higher energies
|w| remains localized at w ~ 4{. Then, to the extend that the one band models
reproduce the physics of the high-Tc cuprates, it is reasonable to expect that PES
experiments carried out at half-filling and near the optimal doping, should produce
dispersive features of similar intensity and bandwidth. The clear similarity between
the experimental bandwidth of the Bi2212 PES data, and recent results for the
insulating St;Cu0,Cly compound,[67] provides more evidence for the validity of
strongly correlated one band models for the cuprates. However, it is important to
remark that while the concrete prediction of our calculations is that the bandwidth
of the hole carriers is of order J, the particular details of the dispersion may d: f fer
from compound to compound. For example, it has been recently remarked that to
reproduce the data for Sr,Cu0;Cl,, the addition of a small t'-term to the 2D t — J
model is necessary.[68] Thus, care must be taken when the fine details of different
compounds at different dopings are compared.

Now consider the inverse photoemission (IPES) (w > 0) intensity in Fig. 4.3.
The observed spectral weight in the vicinity of (7, 7) somewhat resembles the dis-
tribution for a non-interacting Fermi system. In principle, this effect does not seem
reproduced by a rigid band filling of the states at half-filling. However, recently
Eder and Ohta[73] have shown that if proper quasiparticle operators[62] are used
in the calculation of the spectral weight (i.e. operators dressed by spin fluctuations,
instead of bare electronic operators), then the intensity of the IPES region is much

reduced and the quality of the rigid band description of the t —J model appears
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more clearly. This is an important point not much emphasized in the literature,
namely that the robustness of the rigid band picture in a given model cannot be
tested by analyzing the removal of “bare” electrons (sudden approximation) as pro-
duced by a PES experiment, but instead “dressed” carriers must be used. Thus,
PES and transport experiments may differ in their predictions if holes are heavily

renormalized as in the cuprates.

T

' \

|

0.0 |
|

|

|

|

K

(1t/3,11/3)

I

Alp,

w/t

Figure 4.4: Same as Fig. 4.3(a) but for density (n) ~ 0.75 i.e. 4 holes on the 16
and 18 sites clusters.

Figs. 4.4 and 4.5 show ED results for A(p,w) using the same clusters and
coupling as at half-filling, but now reducing further the density to (n) ~ 0.75 and
0.50 (i.e. 4 and 8 holes in the 16 and 18 sites clusters). In this case, through the
spin correlations we observed that £ 45 1s less than one lattice spacing and thus the
influence of AF fluctuations should be small at these densities. Indeed the two-peak
structure discussed before at higher densities is now difficult to identify. While the
broad valence-band feature at w ~ 4t remains, only remnants of the AF-induced

intensity above the naive Fermi momentum can be observed. The IPES signal
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Figure 4.5: Same as Fig. 4.3(a) but for density (n) ~ 0.50 i.e. 8 holes on the 16
and 18 sites clusters.

increased its intensity and now A(p,w) resembles the behavior of a non-interacting
“cosp, + cosp,” band.

An interesting detail of Figs. 4.1(a), 4.3(a) and 4.4, is that the intensity of PES
weight at p = (7, 7) changes appreciably as the density is varied. This is to be
expected since p = (7, 7) is the momentum the most sensitive to the presence of
AF correlations. In particular, when {4 — 0, we expect that the PES weight at
p = (7, 7) will be mostly transferred to the IPES regime. The presence of PES
weight at (7, 7) and (n) = 1 is a direct consequence of the AF correlations, and for

a paramagnetic background A((r,7),w < 0) should be negligible.

4.4 Conclusions

Summarizing, in this chapter the quasiparticle dispersion of the 2D t — J and
Hubbard models was analyzed as a function of the electronic density. At half-

filling, A(p,w < 0) has a sharp quasiparticle-like peak at the top of the valence
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band with a bandwidth of order J. This structure is the relevant one for the low
temperature behavior of the models. A second broad feature deeper in energy was
also identified. As the electronic density decreases, the “two peak” structure remains
clearly visible as long as the antiferromagnetic correlation length £47 is robust.
When the AF fluctuations become negligible a crossover exists into a dispersion for
the quasiparticles which resembles a weakly interacting system. For realistic values
of the coupling, namely U/t = 10, this crossover from an antiferromagnetic metal
to a paramagnetic ground state occurs between (n) = 0.88 and 0.75. Then, in the
interesting regime for the copper oxide materials the AF correlations govern the
behavior of the spectral weight. The present results give strong support to theories
of the cuprates based on the behavior of carriers in an antiferromagnet,[56,57] and
provides information about the crossover from a half-filled to a doped system that

can guide the analysis of ARPES data.



CHAPTER 5
ON THE FERMI SURFACE OF STRONGLY CORRELATED
ELECTRONIC MODELS

In this chapter, the evolution of the Fermi surface upon hole-doping is studied in
the t-J model by exact diagonalization of chains and planes. In one dimension and
at low hole doping, the momentum distribution function n(k) indicates the presence
of pockets at the (noninteracting) Fermi momentum, while increasing the density of
holes a large Fermi surface is observed. Although the results in two dimensions are
consistent with this picture, conclusive evidence for the existence of hole pockets
cannot be provided in the present study of 4x4 and /18 x \/18 square lattices. In
order to improve the resolution in momentum space, twisted boundary conditions

are used for the two-dimensional clusters. The results of this chapter have been

published by S. Haas in Phys. Rev. B 51, 11748 (1995).

5.1 Introduction

The shape of the Fermi surface in models of strongly correlated electrons has
recently been a controversial issue.[72,73] It is known that long-range antiferromag-
netic order in two spatial dimensions is only established at half-filling and 7" = 0.
However, some theories for the formation of superconducting pairs at finite hole

density have been guided by this limit, supplemented by the observation of robust
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short-range antiferromagnetic correlations in the high-7. compounds.[74-76] Some
unusual normal state properties, like the linear temperature dependence of the re-
sistivity and the change of sign in the Hall coefficient, can be accounted for in terms
of strong antiferromagnetic correlations in these materials.[75,76]

The nature of quasiparticles in these systems is intimately related with the topol-
ogy of the Fermi surface : do all electrons participate in the response to external
fields, which would imply a large Fermi surface I' Or is it possible to understand the
low-energy properties in terms of a dilute gas of dressed holes occupying preferred
points in momentum space on bands whose particular shape is produced by strong
correlations T

At half-filling, models of strongly correlated electrons are known to be unstable
towards the formation of a spin-density wave commensurate with the lattice. They
are antiferromagnetic insulators because of strong on-site repulsion, and their Fermi
surfaces have perfect nesting properties with nesting vector Q = (x,7) in 2D, or
() = 7 in the one-dimensional analogue. How does the shape of the Fermi surface
change upon hole doping T'

There are two competing scenarios depicted in Fig.5.1. Approximations based
on holon-spinon decoupling [77] and high-temperature expansions[78] suggest a
large Fermi surface compatible with Luttinger’s theorem and similar to the non-
interacting case (Fig.5.1a). However, meanfield calculations based on spin-density
fluctuations [74] and unbiased computational techniques[73,79-81] suggest the pres-
ence of hole pockets at low doping and low temperatures. The latter scenario
does not necessarily contradict the apparent large Fermi surface observed by early

photoemission experiments in the cuprates, [82] since thermal effects can easily
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Figure 5.1: Schematic plot of the Fermi surface in strongly correlated electronic
systems at low hole-doping (&~ 10%). The solid line denotes the non-interacting
case. (a) Scenario 1 : large Fermi surface; (b) Scenario 2 : hole pockets.

“wash out” and topologically connect the pockets producing a “large” surface
(Fig.5.1(b)).[75,76,80,83] Recently, Aebi et al. used a novel photoemission tech-
nique that allows the mapping of the entire Fermi surface.[84] These authors show

data which indicate the existence of hole pockets for Bi2212.

5.2 Momentum Distribution Function in 1D

In our study, we will discuss the momentum distribution function

1

ne(k) = N

Yo <@, én > exp(ik - (v, — 1)), (5.1)

where ¢,, creates a hole at site n. In clusters with an even number of holes, we
have ny(k) = n(k) = n(k). If there are indeed hole pockets constituting a pocket-
like Fermi surface, a “dip” in n(k) should be seen at momenta close to the Fermi
surface of the half-filled system. Previous calculations[73-75,79,80] suggest that

these minima are centered around (7 /2,7/2) and its rotational symmetry points as
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indicated in Fig.5.1(b). In our study, we will explore n,(k) along the diagonal in
the Brillouin zone (indicated by the dotted line in Fig.5.1). This is a convenient
choice, since the dip should be most dramatic along this line. Also, results for
the one-dimensional analogue correspond to this cut of the Brillouin zone from the
ferromagnetic (k = (0,0)) to the antiferromagnetic (k = (7, 7)) wave vector. Exact
diagonalization of chains allows to access many more momenta along this line than
in the two-dimensional analogue. The analysis of one-dimensional systems will be a
guide to the intuition for the square lattice.

With our method, we will not be able to address the nature of the discontinu-
ities which appear in n,(k), especially not in the two-dimensional case where the
resolution of the momentum distribution function is very coarse. The focus of this
chapter is on the existence (or non-existence) of hole-rich areas in the vicinity of
what would be the naive Fermi-surface obtained e.g. in a tight-binding calculation
(k ~ (7/2,7/2) in 2D close to half-filling).

Now, we will consider the t-J model which is assumed to capture the low-energy

behavior of the cuprates. Its Hamiltonian is given by

1
Hy=—t 3 (@&, +he)+J 3 (Si-S; — 2nny), (5.2)

<uj>o <> 4

where the ¢-operators are hole operators acting on non-doubly occupied states, J is
the exchange integral, and ¢ is the hopping amplitude. In our study of the above
system, we numerically diagonalize chains of up to 16 sites with closed shell boundary
conditions, and 4x4 and \/18x/18 planes with mixed boundary conditions using a
Lanczos algorithm (see chapter 2).

In one spatial dimension, the spin and charge degrees of freedom decouple. Hence

the algebraic decay laws associated with spin, charge and superconducting correla-



113

tions are given in terms of two independent coeflicients, k, and k,.[85] When there
i1s no spin gap, k, remains constant, and the low energy fluctuations depend only
on k,.[85] When k, < 1, spin-density fluctuations (o 1/r***) dominate, while
singlet superconducting fluctuations (o< 1/rf+!/%) decay the slowest for k, > 1.
As J/t > 1, the holes tend to cluster together, and the system becomes phase
separated. The phase diagram for the one dimensional t-J model is shown in Fig.

5.2.[86]
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Figure 5.2: Phase diagram of the 1D t-J model as a function of the electronic density
(n) and J/t from Ref.[86]. PS denotes “phase separation”, k, > 1 (k, < 1) implies
that singlet superconducting (spin and charge) correlations decay the slowest in the
ground state

Experiments in the cuprates suggest J =~ 1450K and J/t ~ 0.4. However,
compared to the 2D phase diagram (shown later in Fig.5.5), the region around .J/t =
0.4 in 1D is much further away from the strip of superconductivity (£, > 1). Hence,
it 1s reasonable to explore also the regime close to the onset of superconductivity in
1D in analogy to the 2D case.

In Fig.5.3(a), the momentum distribution function on a linear 16-site cluster is

shown at various fillings and J/¢ = 0.4. At half-filling, the momentum distribution
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Figure 5.3: (a) Momentum distribution function n(k) for a 16-site chain at J/t =
0.4. Circles correspond to the half-filled case (< n > =1), squares : 2 holes (<

n >=0.875), diamonds : 4 holes (< n >=0.75), and triangles : 8 holes (< n >=0.5);
(b) and (c) same as (a) but at .J/t = 2 and 3, respectively.

function is constant (n(k) = 0.5), since the hopping term is not active. As the
system is doped with holes, the Fermi momentum moves to lower values (kr <
7/2), and hole pockets can be seen around k = 7 /2 at fillings < n >= 14/16 and
< n >= 12/16. Closer to the dilute limit, < n >< 8/16, values for n(k) similar
to the non-interacting case are recovered. The depth of the pockets is maximum
around < n >= 0.875, which is in nice agreement with the results reported in Ref.
[80].

Increasing the exchange coupling (Figs.5.3(b) and (c)), the pockets persist even
beyond quarter-filling. However, the maximum pocket depth remains at < n >=
0.875. The enhanced clustering of quasiparticles around £ = 7/2 can be understood
in terms of an effective attraction among holes due to the exchange term as J/t >

1.[87] This mechanism ultimately leads to phase separation for J/t > 3.5, as shown
in Fig.5.1(a).
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Let us compare the results for the 1D t-J model with the one-band Hubbard

model, which is known to have common low-energy properties in the limit U/t > 1.

Its Hamiltonian is given by

Hipwp = —t Z (c{gctj’g + h.c.)+ UZ”iTniia (5.3)
<ij>,o i
where c;rg creates an electron at site 1 with spin projection o, nj, is the number

operator, and the sum (ij) runs over pairs of nearest neighbor lattice sites. U is the

on site coulombic repulsion, and ¢ is the hopping amplitude.
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Figure 5.4: Momentum distribution function n(k) for the Hubbard model at U/t =
10. (a) One-dimensional case obtained by exact diagonalization of N=8 and 12
clusters. Circles :

: <n >=1, squares : < n >= 0.833, diamonds : < n >= 0.75,
upright triangle : < n >= 0.666, and tilted triangle :

: < n >= 0.5; (b) Two-
dimensional case obtained by a meanfield calculation from Ref. [74,80]. The results
for a 20x20 lattice are shown. The solid line corresponds to < n >= 1, dashed
line : < n >= 0.95, and dot-dashed : < n >= 0.9. The inset shows meanfield
results for n(k) in the 4x4 cluster for 1 hole (circles), 2 holes (diamonds), and 3
holes (triangles).

Since in the Hubbard model double occupancy is not forbidden at a given site,

the size of the Hilbert space for a given cluster is much larger than for the t-J

model. Thus we restrict ourselves to linear clusters of N=8 and 12 atoms. Closed
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shell boundary conditions are used. In Fig.5.4 we show results for n(k) at U/t = 10
(corresponding to 4t/U ~ J/t = 0.4). Our exact diagonalization results for the 1D
case (Fig.5.4(a)) are in excellent agreement with the more elaborate Bethe-Ansatz
calculations in the U/t — oo limit by Ogata and Shiba.[86]

For the half-filled case, the Fermi momentum is exactly kr = 7/2. Similar to
the t-J model, indications for the precursors of pocket formation around & = #/2
are seen at fillings < n >= 10/12 and < n >= 6/8. This is consistent with Monte
Carlo results on 2D clusters which find pockets at electron densities > 0.75, and a
maximum effect at < n >= 0.9. At fillings below < n >= 0.75, in n(k) we recover

the topology of a dilute gas similar to the non-interacting case.

5.8 Momentum Distribution Function in 2D

In Fig.5.4(b), we show the result of a simple mean-field calculation in 2D follow-
ing Ref. [74]. In this approximation, the antiferromagnetic state effectively produces
a 2x2 unit cell. The mean-field Hamiltonian is diagonalized producing conduction
and valence bands separated by an antiferromagnetic gap. The energy levels are
given by FEj = i\/m, where ¢, = —2t(cosk, + cosk,), and A is found using
a self-consistent equation. At half-filling, the valence band is filled. Upon doping,
quasiparticles are removed from the top of the valence band to mimic the presence

of doping. Now, n(k) is given by
n(k) = 51— =), (5.4)
where the chemical potential is chosen such that the density is < n >.

Since this approach expands about a spin-density wave state which becomes

stable at half-filling, we consider it to be valid only at high electronic fillings.[80]
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In Fig.5.4(b), n(k) along the k = k, = k, direction calculated from this mean-field
approximation is shown for a 20x20 lattice with U//t = 10 and < n >= 1.0, 0.95 and
0.9. There is a clear pocket-like feature at (7, 7). The inset of Fig.5.4(b) shows n(k)
for the 4x4 cluster with one, two and three holes at //¢ = 10. Although indents are
observed at (7, 7), the small size of the cluster prevents the formation of pockets.
This i1s the same kind of finite size effect we will have to deal with when performing

Lanczos calculations in 2D, and it probably also explains the absence of hole pockets

reported in Ref. [72].
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Figure 5.5: Schematic phase diagram of the 2D t-J model taken Ref.[76]. The
notation is similar to Fig.5.2 with + = 1 — (n), “SC” denoting a mostly d-wave
superconducting region (although close to X=1.0 it becomes s-wave), “PM” a para-
magnetic region, and “AF” antiferromagnetism

Finally, let us turn to the t-J model in two dimensions. In previous studies,
Dagotto et al. [76,88] have found a phase diagram that is similar to the 1D case
in some respects (Fig.5.5). At large values for .J/¢, the effective attraction between

holes, mediated by the exchange term, leads to phase separation of electron-rich and

hole-rich regions. Close to the onset of phase separation enhanced superconducting
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pairing correlations were reported. At J/¢t < 1, a paramagnetic phase with strong
antiferromagnetic correlations is observed.

Evidence for hole pockets based on exact diagonalizations of small clusters re-
mains controversial. 4x4 and \/18xV/18 clusters provide a very low resolution in
momentum space to study the topology of the Fermi surface.

In the present study of the 4x4 cluster, twisted boundary conditions are used
to increase the resolution in momentum space.[89] A flux (¢, ¢,) is introduced
into the hopping term which effectively shifts the ground state momentum by
k = 2n[(¢z/ L)X + (¢y/L,)¥], where L, = L, = 4 are the lengths of the sides
of the lattice. Then, the hopping term in the Hamiltonian acquires a phase :
H, = —tEiJ[Eigei(‘s"EiHJ + Eigei(‘syéiﬂ’g +h.c.]. Along the diagonal (k, = k,) the
total momenta are translated into k = k.4 + Nyx, where N, is the number of
holes and k,;; is the ground state momentum of the cluster with periodic boundary
conditions. To obtain the momentum distribution function at k; = (#/4,7/4) and
ky = (37/4,3%/4), we calculate n(ky) and n(k:) for twisted clusters , and average
over the boundary conditions.

In Figs.5.6(a)-(c), we show the electronic momentum distribution for the 4x4
cluster along the line (I' — M — X —T') at various fillings and .J/t = 0.4. While for
the 2-hole case ny(k) = n (k) is valid, for odd numbers of holes this is not true in
general. Thus, we consider the quantity n(k) = [n1(k)+n|(k)]/2. As can be seen in
Fig.5.6(a), one hole in the 4x4 lattice has a momentum close to (7/2,7/2). However,
n(k) for two and three holes (Figs.5.6(c) and (d)), does not show pocket formation,

but only a small indent at (7/2, 7 /2). For larger values of .J/t, the size of the indents
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Figure 5.6: (a)-(c) Momentum distribution function for the t-J model in a 4x4 cluster
at J/t=0.4 with one, two and three holes. The path through the first Brillouin zone
is chosen along I' — M — X — I'. Twisted boundary conditions have been used to
obtain n(k) at (7/4,7/4) and (37/4, 37 /4).

becomes more dramatic linking this effect to antiferromagnetic correlations in the
system.

Although the observed n(k) does not seem to support the hole pocket scenario
at first glance, we would like to point out that this might be due to finite size effects
in the cluster. The inset of Fig. 5.4(b) shows n(k) for the 4x4 Hubbard system at
U/t = 10 and the same fillings as in Figs.5.6(a)-(c). Although dips at (7/2,7/2)
are clearly observed in larger clusters, only indents comparable with our Lanczos
results can be seen in the 4x4 lattice. Thus, the results shown in Figs.5.6(a)-(c) are
at least compatible with the hole pocket picture.

Although our calculations are in good agreement with previous exact diagonal-

ization studies of this system,[73,90,93,94] we would like to point out some of the
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differences.[91] For the case of two holes on a 4x4 cluster, there is a degeneracy be-
tween (0,0), (7,0) and (0, 7). Guided by the reasonable assumption that two holes
in an infinite lattice will produce a ground state with momentum (0,0), previous
authors have chosen this to be the ground state for their calculations in the 16-site
square lattice.[90] However, since the (0,0) state does not form a closed shell for
this particular system, there is no apparent reason to prefer it over the (7,0) and
(0,7) states. In particular, the present calculation is based on an average of the
(7,0) and (0, 7) states since in this case we find n(x/2,7/2) < n(x,0) = n(0,7),
consistent with the one-hole and three-hole behavior as well as with high temper-
ature expansion calculations.[78,92] The opposite is found starting from the (0,0)
state.[90] Also, when a small negative next-nearest-neighbor hopping term is added
to the Hamiltonian - a realistic assumption with regard to the hole-doped cuprates

- the ground state momentum becomes k = (7,0) = (0, 7).[79,95]

5.4 Conclusions

In summary, our results are compatible with the existence of hole pockets in
models of strongly correlated electrons. In one dimension at low hole-doping, holes
tend to cluster around certain momenta close to the Fermi surface, while at higher
hole fillings the picture of a noninteracting gas of electrons becomes appropriate. We
also find indications for a clustering of holes around (7/2,7/2) in two dimensions.
However, no conclusive evidence for the existence of hole pockets can be provided
here. It has been argued that this might be due to finite size effects which also occur
for spin-density wave mean-field calculations on small clusters. Our findings are in

good agreement with recent numerical calculations[80] which support the picture of
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hole pockets as has been brought forward in Ref. [74,75]. These findings are also
consistent with recent photoemission experiments.[84] Our calculations can be made
compatible with high temperature expansion results if the thermal wash-out effect
is taken into account. [80,83] It is necessary to work at very low temperatures to

observe hole pockets in these systems.



CHAPTER 6

INFLUENCE OF LONG-RANGE INTERACTIONS ON

SUPERCONDUCTIVITY AND PHASE SEPARATION

In this chapter, the t-J model is studied including a long-range 1/r repulsive
interaction. It is observed that charge — density — wave states become stable as the
strength of the 1/r term, V., is increased. Due to this effect, the domain of stability
of the superconducting phase that appears near phase separation at V., = 0 is not
enlarged by a 1/r interaction as naively expected. Nevertheless, superconductivity
exists in a finite region of parameter space, even if phase separation is suppressed.
Some of the results presented in this chapter have been published by S. Haas, E.

Dagotto, A. Nazarenko, and J. Riera in Phys. Rev. B 51, 5989 (1995).

6.1 Introduction

The presence of charge modulations and phase separation in the high-Tc com-
pounds has recently attracted considerable attention.[96,97] In the present study of
the t-J model, we observe that even in the presence of mobile carriers, CDW phases
are stabilized by the 1/r term in a large region of parameter space, reducing the
potential domain of stability of the superconducting phase. Nevertheless, we also
notice that superconductivity is not strongly suppressed either (unless V ou crosses

some threshold).
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The Hamiltonian for the t — J model with 1/r interactions has the form

nan

1
= —1 Z ClchJCT + h. C —|—J Z IIIIIJ) + Vcoulz

<ij>c <ij> ij

(6.1)

rlJ
where the ¢-operators are hole operators acting on non-doubly occupied states, and
r;j 1s the shortest distance between sites 1 and j.

To analyze the ground state properties of this Hamiltonian Lanczos techniques
are used (see chapter 2). Charge, spin and pairing correlations are monitored as a
function of J/t, Vou/t, and (n). In 1D, the conformal field theory parameter k, is
also studied.[97] If k, > 1, the singlet pairing correlations decay the slowest against
distance, and thus are dominant in the ground state. To discuss the results in
both the 1D and 2D t-J model, for simplicity we will use the quarter filling density,
(n) = 1/2, where signals of superconductivity are clear even in small 2D clusters.
The smooth connection between quarter-filling and half-filling at V.,,y = 0, leads us
to believe that the conclusions of this chapter are valid in the realistic regime of

small hole density as well, where the relevant values of J/t are small in the 2D case.

6.2 The t-J-1/r Model in 1D

It is helpful to first consider the atomic limit V.., J > t, where intuition can be
gained about the states that will compete with superconductivity and phase separa-
tion. Several CDW phases were observed in the ground state as a function of J/V ou
after the 1/r interaction makes the phase separated regime unstable. These CDW
phases have an increasing number of electrons in each microscopic cluster as J/Voul
grows, since J favors the formation of large spin structures to gain antiferromagnetic

energy. Monitoring the density-density correlation functions, we observed that
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the CDW states are stable even for a finite hopping t, and their rough domain
of stability is shown in Fig. 6.1. Phase I is a standard Wigner crystal. Phase
IT 1s a Wigner crystal of pairs i.e. a regular distribution of charge 2e spin-
singlets, similar to those observed in the t-J-V model.[98] This state is stable
since the pairs take advantage of the short range effective attractive force pro-
duced by J. Phase III has clusters with four electrons, and as J increases the size
of these microscopic clusters also increases smoothly producing a cascade of CDW
phases. In the limit where J is the only relevant scale, phase separation is recovered.
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Figure 6.1: Phase diagram of the 1D t-J model with long-range 1/r interactions at
density (n) = 1/2 obtained from the analysis of a chain with 16 sites. The region
k, > 1 is where superconductivity dominates in the ground state. At large values of
Vcoul, or to the right of the superconducting region, the ground state is dominated
by CDW order (states I, II, III, ... having different charge modulations). The open
(full) circles denote holes (electrons). The size of each microscopic cluster in the
CDW state increases as J/t increases, and the many CDW phases after IV are not
shown. Phase separation (PS) is only stable at V.o = 0 in the bulk limit.

When the hopping amplitude t is nonzero, intermediate values of J, and a small
coupling Vou, a regime of superconductivity exists (i.e. k, > 1) on a finite region

of parameter space, while in the bulk limit phase separation exists only along the
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Vo = 0 line in Fig. 6.1. In the pure t-J model, the compressibility diverges at the
boundary of phase separation. On the other hand, at finite V.o, £, is a smooth
function of J/t, it becomes larger than one on a small region, and then it smoothly
converges to zero at large J/t. To gain more intuition about the physical behavior
of the system, we also studied pairing correlations observing that in the regime
where k, > 1, these correlations are indeed very strong in the ground state and they
continue having a large value, beyond the apparent stability regime signaled by £,.
This curious effect shows that short distance superconducting fluctuations may be
relevant in a wide region of parameter space, even if their asymptotic power-law

decay is not the dominant one.

4.0 T T T T

X
3.0

2.0

1.0

0.0 1 1 1 1
1.0 2.0 3.0 4.0 5.0 6.0
4.0 T T T T

X
3.0
20

1.0

0.0

Figure 6.2: CDW and SC susceptibilities in the 1D t-J-1/r model. The superscripts
for the CDW susceptibilities correspond to the various CDW modulations depicted
in Fig. 6.1.

To illustrate the crossover between different modulations of charge-density-waves

and superconductivity, in Fig. 6.2 we show the susceptibilities corresponding to
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CDW and SC correlations as a function of the parameters J/t and V., /t. These

susceptibilities are related to the real space correlation functions by

1
Xowp = 77 2ii(Ail),
1 o
Xcow = ﬁzi,ﬂnmﬁew(rl i), (6.2)

where ¢ controls the modulation of the charge-density-wave. As is seen in this
figure, superconductivity dominates in a region 2.4 < J/t < 3.2 at small values for
the parameter V. ,,/t which controls the Coulomb tail. At V.,u/t = 0.3 the super-
conducting susceptibility is very weak (not shown for this case), and various CDW

phases dominate.

6.3 The t-J-1/r Model in 2D

In 2D we have carried out an analysis using 4 x 4 clusters, In the atomic limit,
which can be explored on larger clusters, the set of stable CDW phases is qual-
itatively different from the 1D case. Here, striped phases (holes ordered in one
dimensional chains along the x or y axis) are dominant in most of parameter space.
As J increases, the number of contiguous chains of electrons in the striped phases
smoothly increases. [99]

Away from the atomic limit, a numerical analysis of the pairing correlations sim-
ilar to that carried out for the pure 2D t-J model suggests that superconductivity
is robust in a region of parameter space analogous in shape to that observed in
1D. The analysis of the other phases is more complicated due to the weakness of

the density-density correlations, and thus in this sense the actual boundaries be-
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coul

Figure 6.3: Phase diagram of the 2D t-J model at density (n) = 1/2 obtained using
a 16 sites square cluster. SC is (d-wave) superconductivity, PM a paramagnetic
region, PS phase separation, I is the standard Wigner crystal, IT a Wigner crystal
of pairs, and IIT and IV are shown in the figure.

tween the various CDW phases in Fig. 6.3 should be considered only as qualitative.

Nevertheless the trends are clear from the numerics, and similar to those in 1D.

6.4 Conclusions

Our study suggests that although phase separation is destabilized by the 1/r
correlation, the region left empty is mostly replaced by CDW phases. The mod-
ulation of the various CDW phases depends strongly on the interaction strength,
J/t, between the electrons. Nevertheless the superconducting phase survives in the
presence of the Coulomb interaction as long as its strength is not too large. In
a more complete study, we have shown that this scenario holds for other models
of correlated electrons, i.e. for the Hubbard model with long-range Coulomb in-
teractions.[100] Also, a similar competition between various CDW phases has been

observed in a related spin-1 Ising system. [99]



CHAPTER 7

DYNAMICAL PROPERTIES OF ANTIFERROMAGNETIC

HEISENBERG SPIN CHAINS

In this chapter, the dynamical properties of spin-1 and spin-1/2 Antiferromag-
netic Heisenberg Chains (AHC’s) are studied by exactly diagonalizing clusters of up
to 18 and 26 sites, respectively. It is shown that the spin-1 AHC has a quasi-single-
mode spectrum for momenta £ > 0.37, while the low energy edge of the spin-1/2
AHC is dominated by a spin-wave continuum. The dispersion curve obtained for the
spin-1 chain is in excellent agreement with recent experiments on NENP. The size
dependence of the low energy spectral weight is also analyzed. The results of this
chapter have been published by S. Haas, J. Riera, and E. Dagotto in Phys. Rev. B

48, 3281 (1993).

7.1 Introduction

The Quantum Heisenberg Antiferromagnet is one of the simplest nontrivial mod-
els of strongly correlated electrons. However, its ground state properties are not en-
tirely understood. In particular, the one-dimensional Antiferromagnetic Heisenberg
Chain (AHC) has recently been given much attention both theoretically [101-109]
and experimentally [110-113]. This interest is mainly due to Haldane’s [106] pre-

diction of a finite gap in the excitation spectrum of integer-spin AHC’s leading to
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finite magnetic correlations, to be compared with the spectrum of half-odd-integer
spin chains which is presumed to be gapless. Previous numerical studies for the
isotropic spin-1 AHC have indeed confirmed the presence of a spin gap A, ~ 0.41J
at k = 7 and Ay ~ 2A, at £ = 0, where J is the Heisenberg exchange integral. [107]
However, not much theoretical information on dynamsical properties of spin-1 chains
is available. Carrying out such a calculation became particularly important after
the recent experiments by Ma et al.[110] on the spin-1 AHC Ni(CyHsN2)2NO2ClO4
(NENP) which have provided strong evidence of a long-lived single-mode picture in
the interval 0.37 < k < x (the region k < 0.37 is experimentally difficult to access
due to the small magnetic scattering cross section in this regime). In contrast to the
half-odd-integer spin chains, the dispersion curve was found to be asymmetrically
displaced about k¥ = 7/2 and presents gaps for all momentum transfers. [110] The
integrated energy intensity drastically decreases for momentum £ < 7 /2. Can these
results be reproduced by a simple spin-1 Heisenberg model on a chainl’

In this chapter, the dynamical behavior of AHC’s with and without spin-gaps is
analyzed and compared with experiments. We will study the excitation spectrum
contained in the zero-temperature dynamical structure factor S(k,w) which is pro-
portional to the scattering cross section measured in Inelastic Neutron Scattering
experiments[110-112] at low temperatures (kT < fiwy). In excellent agreement
with experiments, we observed that interactions between the dominant excitations
are negligible in this regime, leading to a single-mode spectrum in the integer-spin
case above a certain threshold momentum transfer.[110] For a quantitative com-
parison of the present numerical results with Ma’s data it is necessary to take into

account the single-ion anisotropy of NENP which is about D~0.18J~0.8 meV.[110]
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While relatively little is known about the dynamical properties of spin-1 chains, a
vast literature on the spin-1/2 AHC is available. Static ground state properties have
been calculated using the Bethe Ansatz.[114,115] However, an exact evaluation of
S(k,w)in Bethe’s framework has not been accomplished. Miiller et al.[101] proposed
an approximate expression for the dynamical structure factor which agrees well with
Inelastic Neutron Scattering studies on KCufs and CuCly - 2N(C5D5).[112,113]
Recent experimental work by Nagler et al. [112] has nicely confirmed the existence

of a spin-wave continuum with a gapless onset at the antiferromagnetic zone center

(k=) and at k= 0.

7.2 Spin Dynamics on the Heisenberg Chain

The Hamiltonian of the one-dimensional Quantum Heisenberg Antiferromagnet

in the presence of single-ion anisotropy is defined by

H =338 Sua + DY (S (7.1)

where the sum is taken over all cluster sites, and the rest of the notation is standard.
The in-plane anisotropy £ 3 ,;[(S¥)? — (57Y)?] has been neglected here. In the case of
NENP it has been experimentally observed that J~3.8-4.1 meV and D=0.18J [110]
while for KCul’; the parameters are J~17.5 meV and D~0.[112] D is produced by
the coupling of a spin to the orbital motion. It destroys the spin rotational symmetry
of the pure Heisenberg Antiferromagnet and pulls the spins into the xy plane.

Let us shortly discuss the microscopic origin of the single-ion anisotropy. The
total wavefunction for a real material contains spatial, orbital and spin contributions.

The spatial and the orbital part are usually neglected for spin systems. However,
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here we want to consider the effect of spin-orbit coupling ,AL - S, and thus the
wavefunction has to be written as a product : |¢) = |[,1.) @ |s, s.). For the case of
Ni?* ions, the orbital contribution to the wavefunction is a constant corresponding
to two half-filled 3d orbitals (see the discussion of NENP in the introduction). Since
spin-orbit coupling destroys the rotational symmetry of the Heisenberg Hamiltonian,
we have now a preferred quantization axis which we choose to be along the z-
direction. Then, the spin-orbit term at a given site ‘1’ is given by AL7S?. Let us now
treat this term to lowest order in perturbation theory. Since the spin and the orbital
contribution can be separated we obtain a shift in energy of D 3¢ |(f, s,5,|S?|0, s, 5,)|?,
where ‘f” denotes final states, ‘0’ is the ground state, and the orbital contribution is
absorbed in the constant D = 23, K“%}#W

We diagonalize Eq.(7.1) on finite clusters with periodic boundary conditions

using the Lanczos algorithm.[116] At T=0 the dynamical structure factor is given

by
S (k,w) =3 [(n]SE10)%6(w — (£ — Eo)), (7.2)
where a=x,y,z , S = \/l—ﬁzl ¢® 5%, N is the number of sites , |n) denotes an

eigenstate of H with energy F, (Fo being the ground state energy), and the rest
of the notation is standard. S““(k,w) is extracted from its corresponding Green’s

function

1
Sk, w) = —=ImG*(k,w) (7.3)
T
which can be written in the form of a continued fraction[116,117]

(0](SF)" 5 [0)
i

GOk, w) = (7.4)

W —dg —

w—a1—
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The coeflicients «,, and b, are obtained from the recursive relation

|fot1) = H|fa) = anlfu) = 02l fam)s [ fo) = SE10), (7.5)

where Eq.(7.5) defines a set of orthogonal states. The coeflicients are thus given by

n = <fn|H|fn>/<fn|fn>v
bi-l-l = <fn+1|fn+1>/<fn|fn>7bo:0' (7-6)

As a check of our calculations we used the real space correlation functions to
verify that the sum rule [dwS*(k,w) = S*°(k) is satisfied. Here S°°(k) =
>.jexp(—1kjy)(0].5¢5%,,|0) is the static structure factor.

The convergence of lattice diagonalizations with the number of sites for the
gapless excitation spectrum of the spin-1/2 AHC is slower than for the spin-1 case.
Thus, finite size effects have to be taken into account when information is extracted
for the N — oo limit. In order to reduce the size of our Hamiltonian matrix we use
spin inversion, spin reflection and the translational symmetry of Eq.(7.1). In spite of
these simplifications the characteristic Hilbert space of the 18-site spin-1 AHC has
1227112 basis elements. The construction and diagonalization of the Hamiltonian
for the N=18 sites spin-1 chain at a given momentum ‘k’ demands less than an
hour of CPU-time on a CRAY-2 supercomputer. To obtain the dynamical structure

factor, a second run of roughly equal CPU-time is necessary.

7.2.1 Spin-1 AHC
Now let us analyze the results for the spin-1 chain. Previous studies have
shown[104,107,109] that the ground state of the spin-1 AHC has zero-momentum

and that its spin excitation spectrum is asymmetric about & = 7/2. A finite (and
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positive) uniaxial anisotropy splits the otherwise threefold degenerate lowest exci-
tation into a higher-energy 5* = 0 state, that we will denote as the singlet, and a
lower-lying |S*| = 1 doublet. In our study we will concentrate on the dynamical
structure factor along the z-axis which measures weights and positions of excitations
in the 5% = 0 subspace. The splitting of the spectrum in the vicinity of £ = 7 due

to in-plane anisotropy[110] has been neglected.
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Figure 7.1: Dispersion curve for a spin-1 AHC. The solid line is a fit to experimental
data for NENP. The symbols denote results from exact diagonalizations of 16-site
and 18-site chains for anisotropies D=0.0 and D=0.18J, respectively. For momenta
k < 0.37, there is no observable spectral weight in the experimental data. The solid
line in that region represents an extrapolation by the experimentalists.

In Fig. 7.1, we show the position of the lowest excitation energy observed in
S7*(k,w) as a function of k, and compare it with the experimental results of Ma et

al.[110] The solid line is a fit of their data to the dispersion relation

k
W = ¢Aﬁ +o?sin?k + A cos? 3 (7.7)

where A = 2.40 £ 0.05 meV, v = 9.7 £ 0.1 meV and A = 34 £ 2 meV. Our

results were obtained from the exact diagonalization of N=16 and N=18 chains.
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An excellent agreement is obtained in the region £ > 0.37, while there is no data
available below & = 0.37. The gap at £ = 0 is about twice the gap at k£ = 7,
which has led to the assumption that at small £ we are dealing with a continuum
of excitation pairs with momentum 7 and -7.[110] In the slightly anisotropic case
(D=0.18J) the & = = singlet gap is given by 0.66J in agreement with the results
of Golinelli et al.[109] To show the influence of the single-ion anisotropy D in the
dispersion, we have also plotted our results for the D=0 case which may correspond

to A,V P,Se where experimentally it was observed that D/J ~ 107*.[118]
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Figure 7.2: (a) Volume dependence of the spectral weight of the lowest lying exci-
tation P, (in %) in spin-1 AHC’s with up to 18 sites. Squares : k = 7, octagons
: k = m/2. N is the number of sites. In the limit N — oo the spectral weights
converge to finite values. (b) Out-of-plane dynamical structure factor of the N=18
spin-1 AHC with single-ion anisotropy D=0.18J for different values of the momen-
tum transfer. Solid line : k£ = 7, dashed line : k& = 27 /3, dotted line : k = 7/3,
inset : k = 7/9. The delta functions have been given a finite width ¢ = 0.1.J. The
inset shows that for low momentum transfers (£ < 0.37) higher lying modes are
not negligible. (c¢) Lowest order coefficients in the continued fraction expansion for
S**(k, 7). Octagons denote N=18, while squares correspond to N=14 spin-1 AHC.
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The relative spectral weight of the lowest energy excitation in S**(k,w) as a
function of the lattice size NV is shown in Fig. 7.2(a). As N — oo, the weights of
the lowest excitation peaks converge to finite values (approximately 94% for k = ).
The convergence is very rapid in the vicinity of £ = 7, which suggests a single-mode
picture in this region. On the other hand, for low momentum transfers (k£ < 0.37)
higher lying modes appear in the spectrum, signaling the presence of multi-magnon
interactions. However, the energy gap and relative peak intensity of the lowest
excitation seem to remain finite in the bulk limit, even for small momentum transfer.

In Fig. 7.2(b), the dynamical out-of-plane structure factor of the N=18 chain is
shown for different momenta at D=0.18J. The delta functions have been approxi-
mated by Lorentzians with a finite width e=0.1J. The integrated spectral intensity
decreases rapidly as £ — 0, in agreement with experiments. As shown in the fig-
ure, for £ < 0.37 higher lying modes become visible, indicating the onset of a
multi-magnon continuum. Also, we have observed that the total spectral weight
of S#*(m,w) also decreases as a finite single-ion anisotropy D is switched on. This
indicates that the spins prefer to lie in the zy plane for positive D. Correspondingly
we would expect an increase in the spectral weights of S**(7,w) and S¥¥(7,w) as D
increases.

In Fig. 7.2(c), we show the first few coeflicients of the continued fraction expan-
sion for S**(7w,w) in the N=14 and N=18 chains. We observed that a truncation of
the expansion beyond the first ~ 14 coeflicients is possible without any noticeable
change in the dynamical spectrum. It can be seen from Eq.(7.6) that the a,’s carry
units of energy while the b,’s are dimensionless. The a,’s are thus expected to grow

proportional to the system volume N, while the b,,’s should converge to a finite value
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as the bulk limit is approached. Both features, the scaling of a,’s with the lattice
size and the convergence of the b,’s, are observed in Fig. 7.2(c). This provides
evidence that the bulk limit has been already reached at N=18.

We have observed that the dominant low-energy pole is isolated, and the gap
to higher lying excitations appears to persist in the bulk limit (a careful finite
size study is necessary to verify the presence of a second gap in the spectrum).
Isolated poles in the spectral functions of holes in two-dimensional antiferromagnets
are common.[119] In that case, the creation of a hole causes a distortion of the
background spin ground state. When the system relaxes to the new ground state,
the hole of course still exists, but the mean values of the spins in its neighborhood
have changed, and it has thus become a dressed hole quasiparticle. It may occur
that a similar picture holds for the spin-1 chain, namely we flip a spin at a given
site creating a local triplet state, and this state may relax at large times to a (still
local) state not much different from the previous one, i.e. only its spin neighbors

are altered. We are currently investigating this possibility.

7.2.2 Spin-1/2 AHC

The spin-1/2 chain has been studied extensively,[101-103,107,112-115] and there
are approximate analytical expressions available for some dynamical observables.
The onset of the excitation spectrum of a spin-1/2 AHC is given by the des

Cloiseaux-Pearson dispersion[115]

ow ﬂ—J :
wfe = T2 sin(h)), (7.8)

which 1s gapless at &k = 7 and 0. Comparing our data in Fig. 7.3 for the lowest

excitations of a N=26 chain with Eq.(7.8) we find good agreement. The small gap
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at k = 7 is due to the finite size of our chain and vanishes in the bulk limit.[117]

In contrast to the massive spin-1 AHC, the spectrum is now symmetrical about

k=mx/2.
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Figure 7.3: Dispersion curve of a spin-1/2 AHC. The solid line is the dispersion
relation proposed by des Cloiseaux and Pearson. The symbols denote results from
exact diagonalizations of 24-site and 26-site chains, respectively.

Above this lower boundary Eq.(7.8), there is a continuum of excitations which is
believed to be made out of pairs of spinons[102] with momenta between 0 and £ /2.

The upper boundary of this continuum is given by
WP = 7 J|sin(k/2)]. (7.9)

In one dimension, a pair of spinons is created by flipping a pair of adjacent
spins in the antiferromagnetic background (see Fig. 7.4). This process creates two
frustrated links (highlighted by dashed lines in the figure) which propagate through
the lattice. In Fig. 7.4, a schematic plot of a pair of spinons propagating on top
of an antiferromagnetic background is given. However, note that for a spin-1/2
Heisenberg chain the background does not have long-range order (it has a gapless

spectrum) because of strong quantum fluctuations.
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Figure 7.4: Schematic plot of a spinon pair propagating on top of an antiferromag-
netic background.

Based on the selection rules and their exact dispersion curves, Miiller et al.[101]
have proposed the following approximate expression for the out-of-plane dynamical

structure factor

A

2 _ wiow

S (k,w) = O(w — wi)B (W™ — W), (7.10)

2
w

where A is a constant and ©(x) is a cut-off step-function. The upper cut-off at
w, P was introduced to guarantee that the usual sum rules are satisfied. It may
be interpreted as the maximum energy of a spinon pair. However, higher order
scattering processes result in small contributions above this boundary which are
observed in exact diagonalizations of finite clusters. Thus, Eq.(7.9) should not be
interpreted as a rigorous sharp upper bound for the spectrum.

To compare these predictions with numerical results, the intensities of the lowest
lying peaks in S**(k,w) are shown for different momentum transfers in Fig. 7.5(a).

In contrast to the spin-1 chain the spectral weights of these peaks seem to vanish

in the bulk limit. This clearly indicates that now we are dealing with a spinon pair
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Figure 7.5: (a) Volume dependence of the spectral weight P, (in %) of the lowest
lying excitations in spin-1/2 AHC’s with up to 26 sites. Squares : k£ = 7, octagons
: k = x/2. N is the number of sites. In the bulk limit these weights seem to vanish.
(b) Out-of-plane dynamical structure factor for a N=26 spin-1/2 AHC (solid line)
at k = w. The delta functions have been given a finite width ¢ = 0.1.J. The dashed
line is a fit to an approximate analytical expression by Milller et al.. The inset
shows the same dynamical spectrum with broadened peaks (¢ = 0.5.J). (c) Lowest
order coeflicients in the continued fraction expansion for S**(k, 7). Octagons denote
N=26, while squares correspond to N=20 spin-1/2 AHC.
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continuum as opposed to a single-mode spectrum as in the spin-1 case. As expected,
finite size effects play a more important role in the gapless half-odd-integer AHC’s
than in a massive theory, as can be seen in our plot of S**(7,w) (Fig. 7.5(b)).
Although the smaller Hilbert space of spin-1/2 chains allows us to easily diagonalize
systems of 26 sites, the results still show finite size effects. Actually, we expect
that the peaks observed in the spectrum will merge into a continuum increasing the
size of the lattice. A combination of several boundary conditions may alleviate this
problem. Nevertheless, there is good qualitative agreement between Eq.(7.10) and
the numerical results. The inset of Fig. 7.5(b) shows S**(7,w) where the occurring
poles have been approximated by Lorentzians with a large width ¢ = 0.5J. The
artificially broadened dynamical spectrum has the 1/w-behavior proposed by Miiller,
and this is roughly the result we expect in the bulk limit when more poles converge
into a continuous spectrum.

In Fig. 7.5(c) the first 11 coeflicients in the continued fraction expansion for
S**(m,w) are shown for the N=20 and N=26 chains. In contrast to the spin-1
case the b,’s have not converged, indicating that the bulk limit has not fully been
reached as anticipated. Notice that for easy comparison of the convergence in Fig.
7.2(c) and Fig. 7.5(c) we have chosen cluster sizes which render similar ratios, i.e.

14/18~:20/26.

7.8 Conclusions

In summary, the dynamical behavior of spin-1/2 and spin-1 AHC’s has been
studied using numerical techniques. Our data suggests that a single-mode approxi-

mation for the massive spin-1 AHC is adequate above & = 0.37 in agreement with
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recent experiments by Ma et al..[110] From the dynamical structure factor and the
scaling of spectral weights with cluster size in the spin-1/2 AHC, we infer the exis-

tence of a spin-wave continuum, in contrast to the spin-1 AHC case.



CHAPTER 8

RANDOM EXCHANGE DISORDER IN THE SPIN-1/2 XXZ CHAIN

In this chapter, we study the one-dimensional XXZ model in the presence of
disorder in the Heisenberg Exchange Integral. Recent predictions obtained from
renormalization group calculations are investigated numerically using a Lanczos
algorithm on chains of up to 18 sites. We find that in the presence of strong X-Y-
symmetric random exchange couplings, a “random singlet” phase with quasi-long-
range order in the spin-spin correlations persists. As the planar anisotropy is varied,
the full zero-temperature phase diagram is obtained and compared with predictions
of Doty and Fisher [Phys. Rev. B 45 | 2167 (1992)]. In addition, we observe a novel
reentrant transition of the ordered phases when exchange disorder is included. The
results presented in this chapter have been published by S. Haas, J. Riera, and E.

Dagotto in Phys. Rev. B 48, 3281 (1993).

8.1 Introduction

The study of quantum models in the presence of disorder is an emerging field onto
which much attention has been focussed lately. Since all experimentally accessible
systems [120] are to some extent affected by randomness in the form of impurities,
random magnetic fields, or couplings, a thorough understanding of disorder effects

can help in comparing experimental observations and theoretical predictions. In
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particular, weakly disordered, low-dimensional quantum spin systems are of inter-
est, since the interplay between randomness and strong quantum fluctuations can
be observed.[121] At T=0, phase transitions in quantum spin models are driven by
zero-point fluctuations, as opposed to thermal excitations in their classical counter-
parts. However, when a random potential is introduced, phase transitions can be
also driven by random fluctuations. This mechanism is particularly interesting in
the case of marginally ordered systems, where the long-range Néel order in the 2D
1sotropic Heisenberg model has been found to be unstable towards thermal fluctua-
tions and random fields, but not towards randomness in the exchange couplings.[122]
In this context, ‘marginal order’ alludes to the fact that the gapless spectrum of the
Heisenberg system can be destroyed by an infinitesimal Ising-like anisotropy in the

Hamiltonian.

8.2 The Heisenberg Chain in the Presence of a Random Exchange

Potential

The anisotropic spin-1/2 Antiferromagnetic Heisenberg Chain is a generic model

of strongly correlated electrons. It is described by the Hamiltonian,
Ho=J ) (MSPSi + SPSTy + SYSE), (8.1)

where the notation is standard. Due to the low dimensionality, quantum fluctuations
destroy long-range order in the region —1 < A < 1, and the spin-spin correlations
decay spatially following a power-law. Beyond the Heisenberg point (i.e. A > 1),
a gap opens in the excitation spectrum and the system develops long-range Néel
order with exponentially decaying correlation functions, while for A < —1 thereis a

ferromagnetic region with Ising-type long-range order.
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Let us now introduce disorder in the form of X-Y symmetric random exchange
couplings, such that the planar symmetry of Hy is not broken by the random po-
tential,

H,andom = Z 6:(SY ST, + SYSEL). (8.2)
The random couplings ¢; are drawn from a uniform distribution P(¢;) = ﬁ[@(& +
8Jzy) — 0(6; — 6J4,)], where (6;) = 0 and ((&;)?) = (86.J4)*/3. The cut-off parameter
0J,, serves as a measure for the strength of the random potential. The physical
properties induced by this distribution are believed to be universal. In order to
test this idea, we also studied random exchange couplings drawn from a Gaussian
distribution, P(6;) = \/#Twexp(—@zﬂaw). Here, 0., serves as a measure of the
random strength.

The properties of XXZ chains in the presence of various random potentials
have recently been studied by C. A. Doty and D. S. Fisher using renormalization
group techniques.[123] It was found that, while random transverse fields destroy the
(quasi)-long-range spin order, a power-law decay of the spin correlations may persist
in the presence of random exchange couplings as long as the random Hamiltonian
does not break the planar symmetry of Hy. In particular, it was predicted that a
quasi-long-range-ordered phase extends from the X-Y regime (—1 < A < 1), when

H,oniom 18 switched on.

8.3 Diagonalization and Quenched Averaging

In our study of the above system, we numerically diagonalized chains of up to 18
sites with periodic boundary conditions using a Lanczos algorithm. The observables

were obtained from a quenched average, i.e. the ground state |¢o(;)) of a chain was
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evaluated for a given set of random couplings j = {6;}, and then the expectation
value of some particular operators O were studied. This procedure was repeated
for m ~ 500 (or larger) different sets of random couplings, and finally the algebraic

average over all m random samples was taken. The quenched average of an operator

O is thus defined by

m

(0)) Z NNOISo(1))- (8.3)

]=1

First, we would like to address the question of whether quasi-long-range order
persists in the region —1 < A < 1 when the disorder potential H, 40 1s switched on.

The relevant observable is the normalized real-space spin-spin correlation function

(1) = %Z (57 55) (8.4)
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Figure 8.1: Double-logarithmic plot of real-space spin-spin correlations |w?([)| at
maximum separation ([ = N/2) as a function of lattice size. The squares repre-
sent data obtained from exact diagonalizations, the solid lines are fits to a power-
law decay |w*(l)] = Al™"* and the dashed lines are fits to an exponential decay
|w*(1)] = Aexp(—£I). The size of the squares is comparable to the magnitude of
the corresponding error bars.
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In Fig. 8.1, the spin-spin correlations w?(/N/2) at the maximum separation
(I = N/2) are plotted as a function of the lattice size N at planar anisotropy A = 0.5
for a couple of random strengths 6.J,,. If the correlations decay with a power-law
|w?(1)] o 777, we expect a straight line with negative slope 7. in a double-logarithmic
plot. It is found that for all random strengths, ¢./,,, a power-law decay (solid line)
fits the numerical data much better than an exponential decay (dashed line), e.g.
the y?-value obtained from least-square fits is typically two orders of magnitude
larger when an exponential decay |w*(!)| o exp(—¢l) is assumed. We observed a
similar power-law behavior in a large region of parameter space.

Why does the random potential not destroy quasi-long-range order in this re-
gionl' According to Doty and Fisher the “random singlet” phase which extends from
the X-Y phase of the pure system (Hy) can be pictured in terms of randomly dis-
tributed tightly coupled singlet pairs of spins.[123] Those spins which are not bound
in a singlet pair interact via virtual excitations. It turns out that these “almost-free”
spins are anomalously strongly correlated. The probability that “almost-free” spins
separated by a distance R interact strongly is claimed[123] to be proportional to
1/R?. This gives rise to the observed power-law behavior in the spin-spin correla-
tions. The decay exponent is found to be 1, = 2. Note that in the exactly solvable
X-Y limit (A = 0) the system maps into a tight-binding model of free fermions
with random nearest-neighbor hopping. In this limit the decay exponent is given by
n. = 2 if a single characteristic localization length is assumed for the properties of
the low-energy wave functions.[123]

In Fig. 8.2, we show 7. obtained in our numerical analysis, as a function of the

disorder parameter 0.J,, for various anisotropies A. The exponent has been extracted
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Figure 8.2: Exponents of the power-law decay lw*(1)| = Al=" as a function of the
disorder parameter ¢.J,, for various positive planar anisotropies. The inset shows
n. as a function of anisotropy in the limit of no disorder. (b) Same as (a) but
for negative anisotropies. The inset shows the energy difference 0F = E(Sfot =

0) — E(S7, = 1) as a function of §.J,, for the 14-site chain. The change in the sign
of 6 F indicates the presence of a partially polarized phase for 0.55.J < ¢.J,, < 3.05.J
at anisotropy A = —0.75. The error bars are not shown explicitly for clarity, but
they are of the order of 10%.
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using chains of size N=6, 10, 14 and 18. [124] The inset of Fig. 8.2(a) shows the
decay exponent 7. for the pure system H, as it has also been obtained in Ref. 6.
The exact diagonalization results are in excellent agreement with predictions from
conformal invariance,[125] and in particular the Heisenberg limit (|w*({)| o I71)
and the X-Y limit (|w?(!)|] o [7%) are nicely recovered. For negative anisotropies,
(=1 < A < 0) conformal invariance predicts a constant exponent 1. = 2, which
i1s also in reasonable agreement with our data, showing that our techniques can

reproduce known results very accurately.

8.4 Phase Diagram of the Spin-1/2 Heisenberg Chain in the Presence

of Disorder in the Exchange Integral

On our finite chains, and as we depart from the 6.J,,, = 0 limit, three regions can
be identified:

(1) In the regime of small randomness (6./,, < .J) the exponent 7. increases
slightly as a function of the disorder parameter 0.J,,, which is a sign of reduced
order.[126] However, the size of our error bars (~ 10%) needs to be improved further
to verify this result at small 6.J,,.

(2) Around 6.J,, = .J, there is an area of high competition between the quan-
tum fluctuations of the original Hamiltonian (J Y,(S757,, +5757.1)) and H,andon -
Locally the random terms can compensate the zero-point fluctuations leading to an
antiferromagnetic Ising-like behavior in the correlation functions. As a result, the
decay exponent 7, has a dent with onset at around ¢.J,, = J, indicating a crossover
into a more ordered Ising-like regime, where correlations decay more slowly than for

the uniform system.
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(3) For large disorder, (6.J,, >> J) H,andom is the dominant term. The depen-
dence of the decay exponent on the planar anisotropy in Hy becomes negligible, and
it approaches 1, = 2 for all values of A, as it has been predicted by renormalization
group arguments.[123]

In the vicinity of A = —0.75 the exponent 7., behaves anomalously for small
disorder. The observed decay in 7, for ¢6.J,, between J and 2.J is due to ferromagnetic
behavior in the real space spin-spin correlations. This anomaly is observed specially
for anisotropies —1 < A < —0.5. The dent of 7, around 6J,, = J can be understood
as a crossover into a phase of higher order. In particular, for A = —0.75 we observed
a transition into a partially polarized phase indicated by the change of sign in the
energy difference 6 F = E(S57, = 0)— E(S;,, = 1), where E(S}, = n)is the quenched
ground state energy in the subspace with S;7, = n. The inset of Fig. 8.2(b) shows
0F as a function of the disorder parameter 6.J,, at anisotropy A = —0.75 for a
14-site chain. It can be nicely seen that the transition into the partially polarized
phase (0.55.J < 6.J,, < 3.05.J) corresponds to the dent in 7. in the same regime of
disorder.

In Fig. 8.3(a), the dependence of the energy on the disorder parameters
0J,, and o,, at various anisotropies is shown for a 14-site chain. As the ran-
dom potential becomes dominant, the system is allowed to relax into a ground
state of higher entropy. The ground state energy drops proportionally to ¢J,,
(0zy) in this region. In Fig. 8.3(b), we show how the static structure factor
(5% (k) = & i ; exp(—ik(i — 7))(0]S75%,,]0)) behaves as a function of the disorder
parameters at antiferromagnetic momentum transfer £ = 7 for the 14-site chain.

In analogy to Fig. 8.2, three regions can be identified. At low disorder the struc-



150

E(0)/J

—5

—10F

—15F

€
N
Z
N
N
Q\/
O
<
ll
O

Z 2722z

8

0.2

0.0 —
0.0

Figure 8.3: (a) Ground state energy of the 14-site spin-1/2 XXZ chain as a function
of the disorder parameter 0.J,, at various planar anisotropies. The random exchange
couplings are drawn from a uniform distribution with cut-off 6J,,. The inset shows
the same except when the random exchange couplings are obtained from a Gaus-
sian distribution of width o0,,. (b) Antiferromagnetic structure factor vs. disorder
parameter ¢.J,, for the 14-site spin-1/2 XXZ chain. The inset shows the same but
when the random exchange couplings are obtained from a Gaussian distribution of
width o,,. (c) Real space correlation functions at the maximum distance for an N
site chain as a function of anisotropy at zero disorder. The bulk limit N = oo is
extracted from a finite size study. (d) Same as (c) at disorder ¢.J,, = J.
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ture factor remains approximately unchanged. In the region of competition, Néel
order is favored for positive anisotropies (0 < A < 1), resulting in an increase of the
antiferromagnetic structure factor especially in the vicinity of A ~ 1. For negative
anisotropies (—1 < A < 0), the ditch in S**(x) indicates a crossover into a ferro-
magnetically polarized region. For large disorder, S**(7) becomes independent of A,
and approaches the X-Y limit for all anisotropies.

The boundary between the long-range-ordered regime and the “random singlet”
phase is obtained from the correlations w”(N/2). In the “random singlet” phase, the
spin-spin correlations at distance N vanish in the bulk limit as N — oo. However,
as the anisotropy is tuned across the critical value \., w?(/N/2) becomes finite,
approaching |w?(N/2)| = 1 in the extreme Ising limit (A = o0). At zero disorder
the Heisenberg point A. = 1 is nicely recovered as the critical point (Fig. 8.3(c)).
In Fig. 8.3(d), we see that the transition point between these two phases is reduced
to about A\. = 0.75 at 6.J,, = J. [127] As a result of the strong competition effects
in the region 6.J,, ~ J, the antiferromagnetic phase bends into the random singlet
regime in a “reentrant” transition, indicating a stronger antiferromagnetic order
in this region. The whole boundary between “random singlet” and Néel phase is
plotted in the phase diagram given in Fig. 8.4.

Both the “random singlet” and the Néel phase lie in the 57 ,,; = 0 subspace.
On the other hand, as the ferromagnetic limit i1s approached, there is a transition
into a partially polarized phase, 1.e. the ground state no longer has S;,,, = 0.
This phase boundary, as well as the transition from the partially into the fully
polarized regime, is extracted from comparing the lowest energies of the various

St .. subspaces (averaged over the ensemble of random couplings). In the region
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Figure 8.4: Phase diagram of the spin-1/2 XXZ chain in the presence of a random
exchange potential. The question mark denotes the “mole hill” phase discussed in
the text.

of competition between quantum fluctuations and the disorder term, the partially
polarized phase bends into the “random singlet” regime, in analogy to the effect at
the phase boundary between the “random singlet” and the Néel phase, as shown in
Fig. 8.4.

For low disorder, our results agree qualitatively with those of Doty and
Fisher.[123] However, their study predicts an X-Y-like “mole hill” phase in the
region —1 < A < —0.5, and for small disorder. Numerically, it is hard to distinguish
this “mole-hill” from the “random singlet” regime, because both phases show power-
law behavior in the correlation functions. However, from our exact diagonalization
data we have observed a region (denoted with a question mark in Fig. 8.4) which

has power-law decay, and is a member of the 57, ,; = 0 subspace, but does not have
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any remnant antiferromagnetic correlations, as has been discussed above in the inset

of Fig. 8.2(b).

8.5 Conclusions

In summary, we have presented the first numerical study of the spin-1/2 XXZ
chain in the presence of a random exchange potential (H,4ndom ). In contrast to a ran-
dom field,[128] quasi-long-range order of the zero-disorder X-Y regime —1 < A < 1is
not destroyed by an X-Y symmetric random exchange. Also, Ising-type long-range
order persists in the presence of small random exchange couplings. The power-
law behavior in the “random singlet” phase may be due to virtual interactions of
“almost-free” spins which are not bound in randomly strong singlet pairs. A com-
plete phase diagram is provided. In addition, we have found an interesting reentrant
transition of the ordered phases (in both the ferromagnetic and antiferromagnetic

Heisenberg limits) when exchange disorder is included.



CHAPTER 9

MAGNETIC RAMAN SCATTERING IN TWO-DIMENSIONAL

SPIN-1/2 HEISENBERG ANTIFERROMAGNETS: SPECTRAL

SHAPE ANOMALY AND MAGNETOSTRICTIVE EFFECTS

In this chapter, we calculate the Raman spectrum of the two-dimensional spin-
1/2 Heisenberg antiferromagnet by exact diagonalization on a 16-site square cluster
and quantum Monte Carlo techniques on clusters of up to 144 sites. The obtained
spectra are compared to experimental results for various high-7. precursors. In spite
of the good agreement observed in the position of the main excitation in the B,
channel, i.e., the two-magnon peak around 0.4 eV, an additional mechanism has to
be invoked to account for the broad and asymmetric shape of the overall spectrum.
This mechanism is motivated in part by recent experimental observations that the
Raman linewidth broadens with increasing temperature. Including magnon-phonon
interactions by treating the phononic degrees in a quasi-static approximation as an
effective renormalization of the exchange integral, our results are in good agreement
with Raman scattering experiments on various high-7.. precursors, such as La; CuOy4
and YBay;Cus3Og¢,. In particular, the calculations reproduce the broad lineshape of
the two-magnon peak, the asymmetry about its maximum, the existence of spectral
weight at high energies, and the observation of nominally forbidden A, scattering.

The results of this chapter will be published in Phys. Rev. Lett. by F.Nori, R.
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Merlin, S. Haas, A.W. Sandvik, and E. Dagotto. A preliminary report was given
by S. Haas, E. Dagotto, J. Riera, R. Merlin and F.Nori in J. Appl. Phys. 75, 6340

(1994).

9.1 Introduction

Raman scattering is a powerful technique to study electronic excitations in
strongly correlated systems. Recently, much attention has been given to the anoma-
lous magnetic scattering with a very broad and asymmetric lineshape observed in
the Raman spectra of the parent insulating compounds of high-7. superconductors,
such as La;CuO,4, and YBa,;Cu30¢, at around 3230cm~! and 3080cm™!, respec-
tively [129]. The selection rules associated with this peak are anomalous : while the
spin-pair excitations scatter predominantly in the B;, channel, there is also a sig-
nificant contribution in the nominally forbidden A,, configuration, as well as much
weaker By, and A,, scattering[129].

Previous theoretical studies on the spin-1/2 Heisenberg model for 2D square
lattices have computed the Raman spectra and its moments for a nearest-neighbor
interaction[130-133] and only the moments when spin interactions along the plaque-
tte diagonal were also included.[134] These show good agreement with experiments
regarding the position of the two-magnon peak, but they fail to account for the
spectral shape, and its enhanced width.

Several schemes have been considered to resolve this problem. Initially, from
the analysis of the moments it was proposed that strong quantum fluctuations were
responsible for the broadening (see, e.g., Ref. [130,134]). However, recent studies of

spin-pair excitations in a spin—1 insulator, NiPS3, show a width comparable to that
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of the spin-1/2 cuprates [135]. This questions the view that the observed anomaly
is due to large quantum fluctuations intrinsic to spin-1/2 systems. We remark that
the measured widths are 3-4 times larger[136] than those predicted by Canali and
Girvin [133] within spin-wave theory using the Dyson-Maleev transformation, even
when processes involving up to four magnons are taken into account. The work by
Canali and Girvin [133] and other groups[137,138] present convincing evidence that
the observed anomalous features of the magnetic scattering cannot be satisfactorily
explained by only considering quantum fluctuations.

In order to explain the observed anomalously broad and asymmetric lineshapes,
it seems then necessary to invoke an additional process. Here, we consider the
interaction between magnon pairs and phonons [139]. This mechanism is motivated
in part by recent experimental observations of a strong broadening of the B;, and
an enhancement of the A;, scattering with increasing temperature[140]. In our
approach we consider the phonons as static lattice distortions which induce changes,
0J;;, in the exchange integral J of the undistorted lattice. We calculate the Raman
spectra for a nearest-neighbor Heisenberg model using a nearest-neighbor Raman
operator in the quenched-phonon approximation which, like the Born-Oppenheimer
approach, focuses on the fast (high-energy) magnon modes and freezes the slow
(low-energy) phonons. This approximation is valid for the cuprates because there
is a clear separation of energies between the magnetic and vibrational modes. For
instance, in YBa;CusOg the characteristic Debye frequency is about 340cm ™' while

the two-magnon excitation is ~ 3080cm™'.
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9.2 Raman Lineshape without Phonon-Magnon Coupling

The isotropic Heisenberg Hamiltonian is given by Ho = J3> .~ S;-S; , where
the notation is standard, and only a nearest neighbor interaction is assumed. For
the cuprates, the exchange integral is J ~ 1450K ~ 0.12¢V. In our study, we
obtained the ground state |¢g) of Hy on finite 2D square clusters with N spins and
periodic boundary conditions using a Lanczos (N = 16,26), and Quantum Monte
Carlo (QMC) (N = 144) algorithms. We studied zero and finite temperature spectra

associated with the nearest-neighbor scattering operator [1-4]

R= ) (B 0i;)(Es - 63)8i - S;, (9.1)

<ij>

where E;,. ;. corresponds to the electric field of the incident and scattered pho-
tons, and 0;; is the unit vector connecting sites ¢ and j. In the cuprates, and for
nearest-neighbors only, the irreducible representations of R are B,, A;;, and F.
We concentrate mainly on the dominant B;, scattering, e.g., E;,. o<  + y and
E,. o ¥ —y. Ay, scattering is characterized by E;,. <  + y and E,. &« ¥ + 3. The
phases associated with these two dominant channels are schematically depicted in
Fig. 9.1

The spectrum of the scattering operator can be written as

I{w) =3 [(¢nlRIo)[*6(w — (E. — o)), (9-2)

where ¢,, denotes the eigenvectors of the Heisenberg model with energy F,,. When
doing exact diagonalizations on small clusters, the dynamical spectrum /(w) is ex-

tracted from a continued fraction expansion of the quantity
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1) =~ Im(6o|R o Flo) (9.3)

where ¢ is a small real number introduced in the calculation to shift the poles of
Eq. 9.3 into the complex plane. In the QMC simulations, the imaginary-time
correlator (R(7)R(0)) is calculated and /(w) is obtained by numerically continuing
this function to real frequencies using a maximum entropy procedure[141].

Our calculated Bj, spectra are shown in Fig. 9.2(a). They were obtained from
exact diagonalization (N = 16) and QMC (N = 144) studies of the Heisenberg
Hamiltonian on square lattices. The two-magnon excitation observed experimentally
lies around 3., which is in good agreement with the location of the main peak
obtained from exact diagonalization in Fig. 9.2. The position of this peak can
be understood in terms of the Ising model, which corresponds to the limit of the
anisotropic Heisenberg Hamiltonian when no quantum fluctuations are present. In
its ground state, the Ising spins align antiferromagnetically for J > 0. Within

this model and for a 2D square lattice, the incoming light creates a local spin-pair
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Figure 9.2: Normalized Raman cross section, [(w)//lnaz, versus w/.J, for the spin-
1/2 Heisenberg model with N sites. (a) B;, Raman spectra obtained from exact
diagonalization with N = 16, T' = 0, and € = 0.1.J; and from QMC with N = 144
and 7' = J/4. By, (b) and Ay, (c) spectra obtained from exact diagonalization
(N = 16) with randomness in the exchange integral representing the interaction
between spin-pairs and the phonons. The continuous, dashed and dotted lines in
(b) and (c) correspond, respectively, to o = 0.3.J, 0.4/, and 0.5.J. For comparison,
the experimental results are shown.
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flip at an energy 3./ higher than the ground state energy. This argument remains
approximately valid even in the presence of quantum fluctuations[130-133]. Our
results indicate that the two-magnon excitation is at 2.9757.J, 3.0370.J, and 3.2J
for the 16-, 26-, and 144-site square lattices, respectively. Finite-size effects are
small because of the local nature of the Raman operator. For the 144-site lattice,
the QMC calculation was carried out at a temperature 7' = J/4 to confirm the
position of the two-magnon peak at 3.2J. This calculation on a larger cluster carries
robust error bars since it is not exact for those clusters. The slight shift of the
peak position, compared to the 7' = 0 results for the smaller clusters, is consistent
with the finite-T" exact diagonalization results of Ref.[131]. Statistical errors, absent
in the exact diagonalization results but unavoidable in any stochastic simulation,
enhance the width of the 144-site spectrum. These results confirm that neither
finite-size effects nor finite temperature can account for the discrepancies with the

experimental spectra.

9.3 Lineshape Anomaly

The Raman spectra obtained from the pure Heisenberg model (see Fig. 9.2) show
good agreement with experiments in regard to the two-magnon peak position, but
the calculated width is too small. We will consider here the coupling between the
magnon pair and phonons [139,140] to account for the observed wide and asymmetric
lineshape. Our mechanism relates to that proposed by Halley [142] to account for
two-magnon infrared absorption in, e.g., MnF,.

Quantum and thermal fluctuations distort the lattice. The exchange coupling,

which depends on the instantaneous positions of the ions, can be expanded in terms
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of the their displacements from equilibrium u. Keeping only the dominant linear
terms: J;;(r)=J;; = J+6J;; =J +u-VJ;(R). Here, 6.J;; represents the instan-
taneous value of u - V.J;;(R), where R denotes the equilibrium position of the ion
carrying the spin (located at r = R + u). In the quenched-disorder approximation,

the effective Hamiltonian is

Hy= > (J+6J;)S:-S;, (9.4)
<ij>

where |6.J;;] < J is a random variable corresponding to taking a snapshot of the
lattice. This new Hamiltonian is no longer translational invariant.

In our study, the random couplings ¢.J;; were drawn from a Gaussian distribution
P(6J;) = exp(—(5]ij)2/2a)/\/ﬁ. I(w) was obtained as the quenched average
over m 2~ 1000 realizations of the randomly distorted lattice. The quenched average
of an operator O is defined by <<O>> = %ZT:1<¢O(])|OA|¢O(3)>, where ¢o(j) is the
ground state of the jth realization of the disordered system.

In Fig. 9.2(b) we show the B;, Raman spectrum from Eq. 9.1 for a 16-sites
square lattice with ¢ ~ 0.4/, which we found to agree best with experimental
spectra [129]. Our calculations do not consider the effect of frozen phonons on the
scattering operator K. Notice that the coefficients pertaining to R are generally
unrelated to the matrix elements of the system’s Hamiltonian (e.g., 0.J/0Q) in H
bears on e?/r, while the corresponding terms oc .5;5; in R bear on the dipole
moment). In particular, and unlike the case without phonons, the fully symmetric
Ay, component of the scattering operator does not commute with .

We find that the three main features observed in the B, configuration[129],
namely, the broad lineshape of the two-magnon peak, the asymmetry about its

maximum, and the existence of spectral weight up to w ~ 7.J are well reproduced.



162
Beyond the two-magnon peak, there is a continuum of phonon-multi-magnon exci-
tations. The small feature around w ~ 5.5.J (for 0 < o < 0.3.J) is compatible with

a four-magnon excitation.

9.4 Magnetostriction

Since the effects of the phonon-magnon interaction (i.e., magnetostriction) have
not been extensively studied by theoretical work in the cuprates, a few comments
are in order. The coupling between the spin and strain degrees of freedom mod-
ifies both elastic and magnetic properties. In fact, there are extensive studies on
the (sometimes very strong) influence of elasticity on magnetism[143-145]. Mat-
tis and Shultz[143] considered the influence of uniform compression (i.e., all bonds
equally distorted) in their classic study of magnetothermomechanics. Their results
were criticized[144] for ignoring the effects of phonons (i.e., local fluctuations in the
bond lengths, which are taken into account in the present work). Recently, giant
magnetostrictive effects have been reported in several high-T. superconductors[146].
Also, important magnetostrictive effects have been reported in heavy-fermion[147]

and low-7,[148] superconductors.

9.5 Superexchange-Phonon Coupling

The width of the Gaussian distribution, o, represents changes in J due to large
incoherent atomic displacements. Thus, one can write o ~ [(§1n.J/6Q)(Q)| where
(@) is an average zero point motion (at T' = 0) and (6.J/6Q)) is a weighted average of

VJ;; with respect to the displacement of all the ions participating in the exchange.
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Parenthetically, it is trivial to treat the case 1" # 0 by increasing 6.J. Let r be
the Cu-Cu distance, v the sound velocity, and M an effective reduced mass for the

=1/2 .~ (.05 which is consistent

ions. A simple calculation gives (Q))/r ~ (Muvr/h)
with X-ray measurements of the mean displacement of oxigen atoms normal to the
layers[149,150]. While V.J;; is not known for most phonons, values for longitudinal
acoustic modes can be gained from the r-dependence of .J in the form J(r) ~ r=®
or lnJ/0Inr = —a[l151]. For conventional transition metal oxides and halides,
10 < a < 14[151], in reasonable agreement with the theoretical estimate a =
14[152]. For the cuprates, high-pressure Raman measurements[153] and material
trends[154] give, respectively, « &~ 5 — 7 and o & 2 — 6. These values translate into
o~ (0.1 —0.35).J. We emphasize that the relevant incoherent 6./’s (or 6Q)’s) of our
case are much larger than those in pressure studies involving coherent motion of ions
(see, e.g., the discussion in p. 466 of [142]). Thus, we must use larger o (o ~ 0.4.]).

Finally, we would like to stress that not every kind of disorder gives rise to the
observed broadening of the spectrum. For instance, disorder by point defects or
twinning planes will not produce such an effect. Also, it is observed in experiments

that the Raman linewidth broadens with increasing temperature[140]. This is a

strong indication of a phonon mechanism for the broadening.

9.6 A, and B;, Symmetries

For the A;, symmetry, the undistorted Raman operator commutes with the
Heisenberg Hamiltonian, and no scattering can take place. However, the addition
of disorder changes the commutator and can produce an A;, signal. Instead, the

silent By, channel remains forbidden within our nearest-neighbor Raman operator.
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Fig. 9.2(c) shows the comparison between our numerically obtained A;, spectra
(for 0 ~ 0.4J) and the experimental results [129,134]. The agreement between
theory and experiments is reasonably good. We stress that the A;, scattering fol-
lows naturally from our model unlike approaches relying on additional hypotheses,
like, for instance, diagonal-nearest-neighbor couplings[134], 4-spin terms[137], new
fermionic quasiparticles[155], or spinons. For a detailed discussion of these and

other proposed explanations of the lineshape anomaly, see [133,138].

9.7 Conclusions

We find that light scattering spectra by spin excitations is caused by intrinsic
spin-spin interactions and also by interactions with phonons. We provide evidence
that the two-magnon Raman peak is strongly modified by coupling to low-energy
phonons which randomly distort the lattice. Our calculations are in good agreement
with experiments and provide a simple explanation of four puzzling features of
the data: the broad lineshape of the two magnon peak, the asymmetry about its
maximum, the existence of a spectral weight at high energies, and the observation

of nominally forbidden A;, scattering.



CHAPTER 10
CONCLUSIONS

Here, we attempt to summarize what can be learned from the Lanczos studies
on the dynamics of fermionic systems presented in the preceeding chapters.

The exact diagonalization method enables us to extract very accurate infor-
mation on the dynamical properties of fermionic systems on finite lattices.[159] In
particular, we can study observables which can be measured directly by inelastic
Neutron scattering (S(k,w)), Raman scattering (I, (w), 4,,(w)), and Photoemis-
sion spectroscopy (A(p,w)). As opposed to the maximum entropy method which is
frequently used to analytically continue the imaginary-time Green’s functions ob-
tained from Monte Carlo simulations, our method has an arbitrarily fine resolution
on the w-axis without any systematic errors but those intrinsic to the finite size of
the lattice.

In the case of the spin-1 Heisenberg chain, there is a gap in the spin-spectrum
which corresponds to a finite spin-spin correlation length of roughly 6 lattice spac-
ings.[160] Since we are able to study clusters of up to 18 sites, the physical system
is entirely contained in the lattices we can handle numerically. The gapped spec-
trum is believed to be due to a topological Hopf term in the effective non-linear
o-model this system can be mapped into. This idea has been first proposed by D.
Haldane in 1981, and the minimum gap A in integer-spin chains corresponding to

a massive boson with momentum 7 has subsequently been called Haldane gap. At
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momentum-transfer k=0, which is not accessible to the Neutron scattering exper-
iment, we expect a gap twice as large as A, corresponding to two massive bosons
with momenta 7 and -7 respectively. This leads to an asymmetry in the dispersion
relation about k=7/2.

In contrast to the Haldane systems, half-odd-integer-spin chains (S=1/2, 3/2 ,
...) do not have a gap in their spectrum, and their spin dispersion is symmetric
about k=7 /2. Since they do not have a finite magnetic correlation length, they can
never be entirely contained in a finite cluster, which imposes potential problems to
any numerical study of these systems. However, from their spectrum the presence of
low-lying modes can be easily identified, and correlations can be measured. A study
of clusters of various sizes allows at least for a qualitative analysis of the physics of
systems with long-range order. We have shown that some dynamic quantities on
finite clusters have a behavior compatible with what is expected for the bulk (i.e.
S(r,w) x 1/w).

While the disorder in the ground state of integer-spin chains is due to topologi-
cal excitations, we can also study systems where disorder is introduced by external
mechanisms such as phononic distortions.[161] To lowest order, phononic distortions
can often be treated as a quasi-static perturbation to the spin system, since there
is a separation of energy scales by typically an order of magnitude (between optical
phonons and magnons). Then, the incoherent part of the phonons simply renor-
malizes the exchange integral of the spin Hamiltonian in a random manner, e.g.
J — J + 6J;;, where ¢ is a parameter that controls the strength of the random

renormalization.
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In the 1D spin-1/2 chain, we find that disorder that only renormalizes the ex-
change constant does not neccessarily lead to an exponential decay in the real-space
spin-spin correlation functions.[162] However, we know from other studies that this
is not the case for random magnetic fields. Then our results support the conjecture
that a disorder term has to break the continuous symmetry of the original sys-
tem (here the 1D Heisenberg model) to induce exponential decay in the correlation
functions.

However, disorder may very well affect the shape of experimental observables
such as the lineshape of the dominant magnetic Raman peaks in the cuprate pre-
cursors. It has been an outstanding problem in the Raman community why the
two-magnon features observed in the cuprates have a broad width and asymmetry
that seem incompatible with calculations on the 2D spin-1/2 Heisenberg antiferro-
magnet, which has been otherwise very successful in predicting physical properties
for these systems. Thus, it seems natural to propose external mechanisms, such as
phononic induced disorder, to account for these features. We have shown such a sce-
nario to be compatible with the widths and asymmetries in the B;, and A;, channels
observed in the insulating parent compounds of the cuprate superconductors.[161]

Furthermore, a phonon mediated broadening is suggested by the apparent tem-
perature dependence of the observed lineshapes. Also, since the A;;, Raman operator
commutes with the pure 2D Heisenberg Hamiltonian, there has to be an additional
symmetry-breaking term in the model to account for the finite spectral weight ob-
served in that channel. The mechanism we propose produces such a structure which

i1s peaked around an energy transfer of 3J consistent with the experiments.
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Although we have gained some understanding of the cuprates at half-filling in
terms of a 2D Heisenberg antiferromagnet and weak inter-plane magnetic coupling
giving rise to a finite Néel temperature of 300K, there is much controversy about
what happens in the doped systems. In particular, long-range antiferromagnetic
order disappears rapidly upon hole-doping. However, there are strong indications for
robust short-range magnetic correlations provided by NMR and Neutron scattering
experiments. In contrast to the conventional superconductors, such as Pb where the
superconducting condensate forms due to electron-phonon interactions, magnetic
fluctuations in the high-T. materials do not act as “pair-brakers”. On the contrary,
there are scenarios which propose spin-fluctuation mediated pair-formation in the
doped cuprates.

Then it becomes important to study the effect of short-range magnetic correla-
tions on the Fermi surface of these materials as a function of doping.[163] Indeed, at
low enough hole doping (6 < 15%) we have observed two distinct features in the spec-
tral function A(p,w) and the momentum distribution function n(p) = [ dwA(p,w)
which deviate from normal Fermi Liquid behavior and can be attributed to short-

range antiferromagnetic fluctuations :

e As a remnant of magnetically induced folding of the unit cell at half-filling
- the antiferromagnetic unit cell is twice as large as the original unit cell -
there are Photoemission bands observed in recent experiments that cannot
be understood by simple band theory arguments. However, in our numerical
study of the corresponding spectral function, we have argued that these shadow
bands are possibly induced by short-range antiferromagnetic fluctuations, and

should be observable up to a doping level of 6 ~ 15%.
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e Some transport measurements on the cuprates at low hole-doping (6 < 10%)
and low temperatures suggest the presence of small pocket-like Fermi surfaces
rather than a large topologically connected Fermi surface. We have shown,
that there is indeed some evidence suggesting the presence of hole-pockets
in both the t-J and the one-band Hubbard model in 1D and 2D.[164] This
behavior does not necessarily violate Luttinger’s theorem - which states that
the volume of the Fermi sea is equal to that of the non-interacting electron gas

-, since this conjecture strictly only applies to non-gapped metallic systems.

Also, it has been under much discussion whether there is a quasiparticle-like
band distinct from the lower Hubbard band in models of strongly correlated elec-
trons. Using both exact diagonalization and Quantum Monte Carlo techniques, we
have argued[165] that up to hole-doping levels of 6 ~ 15% there are two distinct
features in the spectral function, namely a lower Hubbard band which disperses
with an energy scale given by the hopping integral t, and a quasiparticle band with
a smaller energy scale given by the exchange integral J. When the antiferromag-
netic correlation length &4 becomes negligible (at higher doping levels) there is a
crossover into a regime where the dispersion of the quasiparticles resembles that of
a weakly interacting system.

Commonly, the long-range Coulomb tail is suppressed in studies of systems of
correlated electrons since it is difficult to handle analytically. In our study of the
effect of such long-range interactions on the phase diagram of the t-J model, we found
that thereis a strong competition between superconducting and charge-density-wave

phases.[166] We also showed that the modulation of the charge-density-wave depends
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strongly on the strength of the interaction parameters. These features are found to
be generic for electronic models in low dimensions.

We hope to have shown in this thesis that the exact diagonalization method is
a valuable tool to determine the dynamical properties of fermionic systems in the
presence of strong Coulomb repulsions and random interactions. In particular, in
the absence of controlled analytical techniques which can treat strong correlations
without bias, some insight into the physics of the high-T. cuprates and some organic
antiferromagnets has been gained using numerical techniques. With the exponential
increase of present day computer capacities we expect to be able to apply the exact

diagonalization method to larger clusters in the near future.
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APPENDIX A

STRONG COUPLING EXPANSION OF THE HUBBARD MODEL

This appendix is based on class notes provided by Dan Duffy for the course
on high-T. superconductivity taught by E. Dagotto in the spring of 1994. The
derivation of the t-J model is based on ”Electron Correlations in Molecules and
Solids” (Springer verlag series in solid-states sciences number 100) by P. Fulde.
In order to study the effects of strong interactions between electrons, it is useful
to study the Hubbard model in the limit of strong coupling, i.e., U/t > 1. The

Hubbard model can be written as:

== UZniTnil —1 Z (C;FUC]‘U + hc) (Al)

<4,j>,0
= Hy+ H, (A.2)
where U contains the strong Coulomb interaction between electrons, t is the hopping
integral, c;rg creates an electron of spin ¢ =T or | at site 1, while ¢;, destroys an
electron of spin o at that site. ‘i’ denotes a vector, i.e. i=(ix, 1y) in the 2D case.

If we take the U-term as the unperturbed Hamiltonian, then we have a highly
degenerate ground state of energy equal to zero. At half-filling, there is one spin
per site (no doubly occupied sites) with a total of 2" possible configurations. Away
from half-filling, the ground state again does not have any doubly occupied sites but
1t contains holes. The first excited state therefore has an energy of U and contains
one doubly occupied site. The second excited state has energy 2U with two doubly

occupied sites, and so on.
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When we apply the hopping term as a perturbation, the degeneracy is lifted.
Instead of having all 2V ground states located at zero energy, there will be a band
of states located around the energy of zero. Similarily, the excited states of U, 2U,
etc. become bands of states. By applying perturbation theory up to second order,
we can generate an effective Hamiltonian - the t-J Hamiltonian - which corresponds

to the lowest energy band of the Hubbard problem.

A.1 Derivation of the Effective Hamiltonian

If we start with the usual matrix equation
H|¥>=FE|T >, (A.3)

we can expand | ¥ > in a complete basis that contains all possible spin configurations
for a given number of electrons on the lattice. For example, suppose we had a linear

chain of four sites with four electrons. Two possible basis states can be constructed

by

[T LT L > = e 0>

[T L0 > = e 10>,
where the creation operators are acting on the vacuum state. Then, we can see that
we can break the basis states up into two subsets: the lower band which contains

no doubly occupied sites (L total states), and the upper band which contains all the

rest of the states which have double occupancy (M total states). Therefore,

|O> = |9, >4+|¥, >, (A.4)
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where

(U, > = > Al> (A.5)
l

[T, > = > A, |m>. (A.6)

Note that [ C n (i.e., 1is a subset of n) with no doubly occupied sites, and m C n
with doubly occupied sites.

Now we can write in matrix form, the equation we want to solve, Eq. (A.3).

Hee! Heo| [ W

b eeded k-4 = FE }--

HQPE Hod [W Y

Note that we have broken up the Hamiltonian into four parts. Hpp is only the part
of the Hamiltonian that acts on states with no doubly occupancy, i.e., the lower
band. Similarily, Hqq is only that part of the Hamiltonian which acts on states that
have at least one doubly occupied site. Hpq and Hqp connect the upper and lower

bands.

Multiplying these matrices out gives the following matrix equations:
Hpp | ¥, > +Hpq | ¥, > = E|¥,> (A7)

Hap [ ¥, > +Hqq | ¥, > = E[¥, > (A.8)

We can eliminate | ¥, > in the equations above to get an expression just for | ¥, >.

However, the order of the operators is important to consider. Therefore, from Eq.

(A.8),

Hqp| ¥, > = (F—Hqq)|¥, >
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|‘I’q>: qu|‘I’p>

FE— Hqq
Now, when we put this result back into Eq. (A.7.), we obtain a “Schroedinger-like”

equation for the subspace | ¥, > only:

1
H Hpg——H v = E|V,>. A9
(Hpp + PG Hed qp) | ¥, > |, > (A.9)
Thus, we can define the effective Hamiltonian to be
. 1
H=H Hpg—————Hqp. A.10
pp+ Hpa g Hap (A.10)

Now that the Hilbert space has been divided into two bands, we can create
projection operators that will project out the basis states that lie in those bands. Let
the lower band have another projection operator P and the upper band projection
operator Q. If we only want that part of the Hamiltonian that acts on states of no

double occupancy, we need to do the following matrix multiplication:

Therefore, we can write Hpp = PHP. We can thus define our projection oper-

ators P and Q as follows:

Po= TI( = nimiy) (A.11)
Q = L (A.12)

Also, we have
Hpp = PHP, Hqq = QHQ (A.13)

Hpg = PHQ, Hgp=QHP. (A.14)
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Putting this into our effective Hamiltonian gives the general result:

1
QOHQ — F

The second term of the effective Hamiltonian contains operators in the denom-

H=PHP - PHQ QHP. (A.15)

inator which pose some problem when acting on the state | ¥ >. When QHP acts
on this state, P projects out only those states with no double occupancy. Then, H,
which in this case is only H,, has to create a double occupancy, otherwise the Q
will kill it. Therefore, the fractional term in the effective Hamiltonian only acts on
states that have just one doubly occupied site. We need only consider that part of
QHQ with U along the diagonal and off diagonal elements of order t. In the limit of

large U, we can approximate QHQ ~ U. Then, making an expansion, we can write

1 1 _1U+E+)
QHQ—-F  U—-FE U v o

(A.16)

As U gets large, the large on-site repulsion of the electrons will make the contri-
butions of the upper band to our state | ¥ > small. Therefore, the energy of the

state will not diverge as U gets large; it will be finite as U — oco. Thus, we can

approximate:
1 1
—_—— ~ —, AT
QHQ —-F U ( )
Then, our effective Hamiltonian in the limit of large U is given by:
~ 1
H=PHP — EPHQQHP. (A.18)

The second term of the effective Hamiltonian assures that when it acts on some state
of our system, it is acting only on one of those states that has no doubly occupied
sites. Then, the right H creates a virtual doubly occupied site before the leftmost

H moves one of the spins off of the doubly occupied site onto a hole.
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A.2 t-J Model

From the definition of P, Eq. (A.11), we can first evaluate PHP. Since the left
P ensures that we are acting on states with no double occupancy, we can replace H
with just the hopping term of the Hamiltonian. The Coulomb repulsion term does
not contribute. Therefore,

PHP = PH,P = —tT[(1 —nyynay) Y. (clejo + hecl)

l <i,j>o

1;[(1 —nankl). (A19)

We will only need to consider the case when 1 = 1,j and when k = i,j. The other
terms of the products will become unnecessary later when we claim to only act on
states with no double occupancy. Then, we have
T T
PHP = —t ) (1 —ning)(1 = njing)eles + cjejr + hoe (1= nani )(1 = njimg)).
<ig>

Note that we have explicitly written out the sum over the spins. Let us consider
only the first term of the above equation. Since 1 and j are nearest neighbors 1 will
not be equal to j. We can then commute the i and j operators according to the

anticommutation relation

T
Cios

Cior = 0; j000r. (A.20)
Therefore, the first term can be written as

(1= nini el (1= nini )(1 = ngn e (1 —ngng)).
Next note that

c;rT(l —ngng) = c;rT — c;rTc;rTciTnil = c;rT, (A.21)
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where we have invoked the Pauli Exclusion Principle:

CjsCig | a> = 0
el la> =0 (A.22)
Jogo - :

The first term now looks like (1 — n”nil)c%cﬂ(l —njin ;). Since, c:»rT creates a spin-
up and n,;; will just count that spin, we can write (1 — niTnil)c;rT =(1- nil)c;rT.
Therefore, the first term becomes (1 — nil)c%cﬂ(l —nj;). We can then define hole

operators, 1.e. operators that only give a non-zero result when acting on a hole, by

&= (1 —=nisy), o= cio(l —ni_y). (A.23)

10 10

Note that these creation and annihilation operators only act in the reduced Hilbert
space of no doubly occupied sites. Therefore, the first term of the PHP term reduces

to é;rTéjT. Then the full PHP term can be written as
PHP = —t Y (&léj, + h.c.). (A.24)

<i,j>o

In order to evaluate PHQ and QHP, we again use the full Hubbard Hamiltonian,
Eq. (A.1). However, since the P projects into the space of no doubly occupied
sites, the Hy term in the Hamiltonian will not contribute. We are thus left with the

hopping term:

QH,P = (1— P)H,P=H,P— PH,P
- Z H(]' - n”nll)(cjcrcjcr + hC)

<t,j>o |

+ H(l — n”nll) Z (CMCJU + h.c. H 1 — nankl (A25)
k

l <t,j>0
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As above, we need only to consider those cases where the projection operators have

terms of subscript i and j. This leaves us with

QHP = 3 cheio(l—nini)(1 = nyin;y)
<t,j>0
+ 0 (= nini)(1 = ngngp)el cio(1 = nini )(1 = njiny ). (A.26)
<t,j>0

Using the results of Eq. (A.21), we can rearrange the terms in H;P. Also, using our
result for PHP, Eq. (A.24), we can write for the first term of the spin sum
QUL = 3 leheji(L—njmy) — (1= niele (L —nj)l. (A27)
<ig>
Adding the two terms in the above equation gives
QHP = Z nilc;rchT(l —nj). (A.28)
<ig>
The entire term of QHP can be written as
QHP = 3 (ni_gchcin(l—nj_p) + hec.). (A.29)
<i,j>o
A similar argument holds for the PHQ term to get
PH.() = Z ((1— ni_g)c;rgcjgnj_g + h.c.) (A.30)
<i,j>o
Putting these two terms together is difficult. Initially, one might expect to write
two separate pairs of indices, one for the PHQ term and the other for the QHP term.
Furthermore, one might expect these pairs of indices, say < ¢,7 > and < [,k > to
be independent of one another. However, that is not the case. The QHP creates a
virtual doubly occupied site and relies on the PHQ to remove the doubly occupance.

Therefore, we have only three indices, of which two are nearest neighbors to the third
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index. Thus, we can write:

PH.QQH,P = Z ((1— ni_g)c;rgcjgnj_g + h.c.)

<1,3><gk>o7
(nj—rcl i (1 —np_r) + hc.) (A.31)
where we have included specifically two different spins o and 7. We will then have
to consider two cases: when the spins are equal and when they are antiparallel. We
will only consider the first term of the above equation.

Altogether, there will be four cases to consider: (1) when the spins are parallel
and i and k are different, (2) when the spins are antiparallel and i and k are the
different, (3) when the spins are parallel and i and k are the same, and (4) when the
spins are antiparallel and 1 and k are the same. We start with the two cases where
1 and k are different.

Case 1. First, consider when o = 7:

_ f i
A = Z (1 = ni_s )iy CioNjmoNjoClyCro(l — Np_s)
<i,5,k>0
= st oo s
_— Z Cio_cjo—n]_gcj‘o.cko—
<i,5,k>0
= Z el el na e
- 10CjoCjoltj—oCko
<i,5,k>0
_ At t .
- Z cicr(]' - cjcrcjcr)nj—crckcr
<i,5,k>0
. o R o R
- Z (CioMjmoCra — CigjoTj—oCho) (A.32)
<i,5,k>0

Note that we have used the anticommutation relations of the creation and annihi-

lation operators to move terms around, given by:
f el = 858
{ciorcirt = 0100

{ch.cl} =0

{ciiciz} = 0 (A.33)
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Also, note that we have used n?_g =Mn;_sNj_, = N;_,, which is valid since n;_, can
be only 0 or 1. Since we start out with states that have no doubly occupied sites,
then the last term will not contribute since either nj, or n;_, will be zero. Thus,
we are left with the following contribution:
A= S dni b, (A.34)
<i,j,k>0

Case 2. Now we will consider the case when i is not the same as k and the spins

are antiparallel. This term will be:

_ . T A
B = Z (1 = nio)CiyCioNj—oNjoCr_yChoo(l — Npo)

<ijk>o

= Z el eon omigeh @

- ioCjolty—oltjoCi_sCk—0o
<i,5,k>0

_ Z N . T oA

= CigCioNj—0C;_oNjoCh—o
<i,5,k>0

_ NP | ) T oA

- Z cicrc]ch—crc]—ch—crn]Uck—U
<i,5,k>0

_ ot N

- Z cicrc]ch—cr(]' - cj—crc]—g)njgck—g
<i,5,k>0

_ ARV , P\ S e

= Z Cio(CjoCi_oMjo = CjoCi_ s €y CimoMNjs )Chog (A.35)
<i,5,k>0

The second term of the above tries to create two spins at site j. Since this is not
allowed by the Pauli Principle, we must ignore this term. We then have:

_ NP oA
B = Z CioCioCi_gMjo Ck—s
<1,5,k>0

= — Z é:fgc;{_gc]‘gnjgék_g. (A36)

<i,5,k>0
Looking at the number operator in the above equation, we can see that it is unnec-
essary. If there is a spin o on site j, the number operator will count that spin and

then the destruction operator will destroy that spin. If there is no spin o on site j,
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the number operator returns zero. This has the same effect as if we just applied the
destruction operator. This can also be seen from the commutation relations, when
we try to permute those two terms. Upon permutation, we are left with a term of
¢;, and another of c}a ¢js Cjo. The second term must be ignored due to the Pauli
Principle. Thus, we are left with:

B=— Y b, (A.37)

<npk>o
Case 3. The next two cases are for 1 and k being equal. We first consider the case

with o = 7. This gives us:

C = Z (1-— ni_g)c;rgcjgnj_gnj_gc;fgcig(l — Ni—y)
<i,j>0
= Y eeonjocléin (A.38)
<i,j>0

Case 4. When the spins are antiparallel:

_ T PR
D = g CioCioNj—oNjoCi_yCig
<t,j>0
= E &l eomani_och &
- [ A A g R
<t,j>0
_ A IPUNIN ISR, B
= E : Ci6CijoCioCijoNj—0Cj_5Ci—0
<t,j>0
= E a (l—cT Cio )CjoNj cl (A.39)
- 10 JoTJo)io Ym0 —g Tt —0 " .
<t,j>0

The second term above must be ignore because of the Pauli Principle. Continuing,

we have:

_ I T Y
D = Z /5 CjoCj_yCi—0Cj_yCivg
<i,5>0
— AU 1 4 o
- Z cicrc]Cch—cr(]' - cj—crc]—g)cl—g
<i,5>0
= Y e (A.40)
- 10 J0 T )j—o 10" .

<i,j>o
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Note, again we have dropped the second term because of the Pauli Principle.
Putting all four terms (A, B, C, and D) together, the effective Hamiltonian is
still incomplete. We have not taken into account the three other terms in Eq. (3.13).

When doing so, similar calculations can be made to find the effective Hamiltonian

to be:
where
o= —t Y (¢, +he) (A.42)
<i,7>0
2t ot foa At oa
Hy, = i Z (cwcjgnj_gcjgcw—I—Cigcjgcj_gci_g) (A.43)
<i,7>0
t2
s = - ST (Enystre — &l cioli o + hoc) (A.44)
<i,5,k>0

In order to make the effective Hamiltonian look more like the t-J model, we can
rewrite the second term of the Hamiltonian as follows. Only looking at the first

term of H,, we have:

— At b

1st Term of Hy, = ClyCioNj—0CjyCin

U Y

= Ci5CjoCioNj—0Cis
_ T oA
- cicr(]- - cjgc]cr)n]—crcw

ot . ~t .
= CiyNjoCic — CiuNjaNj—gCig. (A.45)

The second term will not contribute in the reduced Hilbert space of our problem,
i.e., there is no double occupancy at site j. That leaves us with,

2t t bt
Hy = —— Y (Eonjootio + &l cioct_yCis)
<iljk>o
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22 . .
= 7 ST (1= nico)nionj—o(1 = nio) + &,cinct_Le2,)
<1,5,k>0
21> At t s
— - Z (1 — nj_o)nionj—o + cigcjgcj_gci_g), (A.46)
<1,5,k>0

where we have used (1 —n,;_,)* = (1 —n;_,). Thus, if we only consider the reduced

Hilbert space of the problem, we have,

22
Hy = =205 (oot elyesocd o)
<4,5,k>0
22
= _7 Z (nianj—g + CIUCZ'_UC]‘UC}_U)
<4,5,k>0
2t f f
= _7 Z (nianj—g - CZ»UCi_gC]‘_gcjcr) (A47)
<4,5,k>0

This term seems unfamiliar until we look at the spin operators defined by

- 1
Si = = Z C:[aU;gCig (A48)
25
where these operators act in the reduced Hilbert space of no doubly occupied sites.

In component form, the spin operator for site i looks like,
CHEEDS C;raazgcw (A.49)
of

where o, is the usual Pauli spin matrix for a spin 1/2 particle. Also, c;r is a Tow
matrix consisting of

c:[ = (c:'rTv c:'rl)v (ASO)

and ¢; is just the hermitian conjugate of the above (which gives us a column matrix).

Multiplying out the terms gives us,

1
Sip = §(CITC¢1—|-CLC¢T) (A.51)
Lot t
Sy = —glepen = ayei) (A.52)
1
Siz = §(C;FTC¢T—CLC¢1)- (A.53)
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Now look at the dot product of two spins of nearest neighbor sites.

L. 1
Si- 8 = 1((CI¢C¢1+CLCH)(C}TC¢1+C}10ﬂ)
+ (e — ) (clies = cliein)
T ot et o ot A.b4
+ (CZTCZT czlcll)(c]Tc]T c]lc]l)) ( . )

Several of the above terms will cancel to give us,

— — ]_
oo oot
+ ningr + nang = ning— nang) (A.55)

Next, we want to look at the above equation minus a factor of n;n; where n; =

g + ). Then,

SZ' . S]‘ — anj == Z(zc:»rTCilC}lCﬂ + 2CLC¢TC}TC]‘1

T nang g - nangp = g

— MMy T MG i i)
1

by by
§(CiTCilcjich + cijcipeiicip — napngp — ngngp). (A.56)

If we include the summation over the spins explicitly, we get

Si- S — = —Z i Cie C,c —oCio — MigNj—g ). (A.57)

4"

If we consider the reduced Hilbert space, this term is exactly like the second term of
our effective Hamiltonian, up to a factor of two. Thus, finally, we have the effective
Hamiltonian - the t-J model - including 3-site terms:

H_; = —t Z c »Cic + h.c.) (A.58)

<i,j>o
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- = 1
<i,j>0
t2
- = S (njslre — el cint, + huc) (A.60)
<i,5,k>0

where the factor J is defined as J = 4¢*/U.

The first term of the above t-J model (including the three site term ) describes
hopping processes of spins from one site to an unoccupied site on the lattice. This
process tends to destroy the established antiferromagnetic order since it mixes spins
among the two sublattices. This process is shown in Fig A.1(a). Note that this
term cannot create a doubly occupied site since we have creation and annihilation
operators only acting in the subspace of no double occupance. The second term
is just the interaction of the spins between nearest neighbor sites. This term can
cause spin deviations, i.e., spin waves, in the system. One such interaction between
spins can cause nearest neighbor spins to flip. Note, though, that the spins do not
actually change position, they just change orientation (Fig. A.1(b) ).

Finally, the three site terms describe the movement of a spin from a given site to
a virtual state that is doubly occupied and finally to a third site which is unoccupied.
In effect, the hole is moved from a site k to a site i, i.e., along the diagonal (Fig.
A.1(c) ). For the most part, the three site terms are ignored. This assumption is
really only valid at half-filling when there are no holes. When doping occurs, these
terms start to play a role in the Hamiltonian. However, when the doping is low, i.e.,
you are close to half-filling, it is a good approximation to neglect these terms not
only because of a low density of holes, but because of the coefficient in front of the
three site terms. Since the coefficient is of order ¢?/U, it will play a much smaller

role than the H; term which has a coeflicient of t.
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Figure A.1: Hopping processes in the extended t-J model.



APPENDIX B
DIAGONALIZATION OF A 4-SITE CLUSTER

As an illustrative example, mainly directed to beginning graduate students that
may be learning the exact diagonalization method, we solve the problem of diag-
onalizing the Heisenberg Hamiltonian for a 4-site cluster with periodic boundary
conditions. The 4-site cluster is unique, since it represents a one-dimensional as
well as a two-dimensional system, when periodic boundary conditions are applied.
This can be seen when the Heisenberg Hamiltonian is expanded in its individual

terms for the two cases :

Hip = JZSi'Si-H:J[S1'Sz+Sz'S3+S3'S4—|—S4'S1]

HQD — JZSZS]:J[SlSQ—|—8283—|—8384—|—S481] (B]_)

<ij>
In the 2D case, the bracket denotes summation over nearest neighbor pairs. A con-
venient basis in which the Hamiltonian operator may be represented is given by all
possible Ising configurations (| TT17),| LTTT),| LITT), etc.). It is easy to see that the
Hamiltonian matrix is blockdiagonal corresponding to the accessible 57 ,-subspaces
in this representation, e.g. for the 4-site chain we have 57, = —2,-1,0.1,2. It
turns out that the groundstate for the finite systems we consider is usually a singlet
state with zero momentum. With that a priori knowledge we will only consider
S7, = 0 1in this example. However, there are exceptions to this set of quantum

numbers depending on the choice of parameters (like i.e. exchange-coupling and
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hopping integrals, or Hubbard repulsion), fillings, boundary conditions and lattice

size. The 57, = 0 basis 1s given by 6 states :

LT LLTLD) DUTT O F T FTLT) [T L. (B.2)

In this reduced basis the Hamiltonian assumes the form :

0 1/2 0 0 1/2 0
1/2 -1 1/2 1/2 0 1/2
0 1/2 0 0 1/2 0
0 1/2 0 0 1/2 0

1/2 0 1/2 1/2 -1 1/2

0 1/2 0 0 1/2 0
where /i = 1. The eigenvalues and eigenvectors of this small matrix can be obtained

analytically. They are given by

eigenvectors eigenvalues

LLTLD + 1 TLT0] = S50 LT + U110 + [T + 1 11L0)] 2]
ST =1 1110)] -J

LI LTI) A+ LT A+ LT+ 1 LTT0) + [ TLD) + [ 11L0)] J
SLLETY = FLITL) = [ 1LY + 1 1110 0

YUY = [ TLAT) + LUTT) — il TT4L)] 0

SIEUTTL) = [ TLIT) =l LITT) +f T74L)] 0

For the eigenvalue ’0’ there is a threefold degeneracy. Thus any mutually orthog-
onal linear combination of the eigenvectors listed for this value would be a solution

as well.
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By applying the translational operator to the groundstate we verify that the
groundstate momentum of this system is indeed £ = 0. Now we will consider the

effect of translating each basis state by one lattice spacing to the right (r=1):

1o (k ) ST T+ TUTD + TITTD + T THD + T 1TL)]

%\

[| T+ LTI+ TTHD + LD + [T + 1T

%\

=) [|lTlT>+|TlTl>+|llTT>+|lTTl>+|TllT>+|TTll>] (B.4)

g

From e(=%7)

= 11t follows that £ = 0. Similarily it can be shown that the eigenstates
with energy -J and J have momentum k£ = 7 and £ = 0 respectively. The E=J
state differs from the E=-2J state in that it has S? = 1 while the groundstate is a
singlet. The threefold degenerate E=0 states have momenta k = 7,7 /4 and 37 /4
respectively.

Since all eigenstates have momentum as a good quantum number it is a good
idea to incorporate the momentum already in the choice of basis states, and thus
to decrease the size of the matrix to be diagonalized. Let us set up the basis with
momentum k& = 0 by applying the translational operator to a given representative

(i.e. | LITT)), and generate from this configuration a class of basis states which form

a new basis state with good momentum :

(OO LT + 0D TL) 4+ TOPTL] 4 OV LT1L),
(—i0~0)| T + e(—i0'1)| TITD (B.5)

These classes need to be properly normalized by factors % and % respectively to

become an orthonormal basis. The Hamiltonian in the subspace of k=0 is now
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represented by a 2x2 matrix
0 V2
Hy—o=J ( ) ) (B.6)
V2 -1
with eigenvalues -2J and J, and the corresponding eigenvectors are given in the table
above.
Similarily, the & = 7 block of the Hamiltonian becomes
0 0
Hy—r = J ( ) ) (B.7)
0 -1
which is already diagonal. The subspaces £ = 7/4 and k¥ = 37 /4 have only one
state with E=0 each.

As can been seen from this example, by introducing symmetries and working in
the appropriate S}, - subspace the effective Hilbert space for a given problem can be
reduced dramatically, in particular for a cluster with N sites translational invariance
yields a reduction of almost 1/N in the size of the Hilbert space (this becomes exact
in the bulk limit N — o).

In addition to the translational symmetry - which in general yields the great-
est reduction in Hilbert space - spin-inversion and rotational symmetries can also
be implemented. These symmetries typically give a reduction of 1/2 (1/4) in the
number of basis states. Using the spin-inversion symmetry the basis can be reduced

to

LT £ [ 1T,
[ ITLT) £ 14T,
[ LT1L) % [ 1L (B.8)
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The groundstate is contained in the ‘4’-block
0 1 0
H=J]1 -1 1|, (B.9)

0 1 0

which has eigenvalues -2J,0 and J. Hence these states have even parity under spin-

inversion while the remaining three states behave odd under this transformation.
Finally, several symmetries can be applied at the same time. In our example,
the subsequent application of even spin-inversion to the k=0 basis-subset does not
give a Hilbert space size reduction since the two k=0 states are already even under
spin-inversion. However, for bigger systems the action of the various symmetries
decouple, and each one yields a considerable reduction in the number of basis states.
Since there still remains a large matrix after exhausting all available symmetries.
it becomes important to find algorithms which deal efficiently with large - and in
general sparse - matrices. If only the groundstate and the first few excited states

which comprise the low-energy physics of a given quantum system are needed, the

Lanczos algorithm in particular i1s a viable numerical tool.
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