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Fluctuation-exchange theory for general lattice Hamiltonians
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The fluctuation-exchange, or FLEX, approximation for interacting electrons is derived for lattice Hamilto-
nians with general instantaneous one- and two-body terms. The use of a two-body basis set indexed by relative
separation, rather than relative momentum, is emphasized. The fluctuation-exchange approximation for the
three-orbital Cu@ model with on-site and near-neighbor Coulomb interactions is solved for one-particle
properties. Unit-cell densities corresponding to both “hole doping” and “electron doping” are studied. The
model is found to be far from a charge-density instability for all reasonable parameter values. The only nearly
unstable particle-hole channel for unit-cell densities close to unityghagr, ) andS=1 (antiferromagnetic
The Fermi surface of the interacting system is computed, and the Luttinger theorem verified numerically in its
most general context. Orbital-projected occupancy factors and spectral densities are examined.
[S0163-182606)07148-2

I. INTRODUCTION the so-called fluctuation-exchange, or FLEX, approxi-
mation}!® This approach takes the view that one-particle
In recent years, self-consistent-fiel(SCH approxi- excitations interact through the exchange of pair fluctuations.
mations have been used to study tight-binding models for(This view can, in principle, be made exact by introducing
correlated electrons. Previous work has been limited to theppropriate two-particle-irreducible vertex functiori§.cor-
Simplest electronic orbital and interaction StrUCtL(HHS., the relations between elements of the pair fluctuation are |g-
one-orbital Hubbard mod&l*and a trivial extensioll). In  nored, the simplest “correlation” contributions to the one-
this paper we extend the SCF analysis to general tightparticle SCF are generatetsee Fig. 2 Note that the
b|nd|_ng mode_ls and perform calcula_tlons of one-particle coryncorrelated pair fluctuation propagator is just a convolution
relation functions for the three-orbital modfemost com- ¢ 1o one-particle propagators. The simplest approximation
monly used to describe the high-temperature cupratqich correlates the elements of the pair using an irreducible

superconductors. vertex function (in contrast with i i
. . - N . perturbation theoryis

We begin by briefly reprising the motivation behind the : . . L
SCF approach. In any SCF approximation the effect of tvvo-FLEx' In this case the irreducible vertex function is just the

particle interactions is partially eliminated by the introduc-untrer?org_aé;ed t\No-parttl_cIe mterg(ljctlon. imol | i

tion of a self-consistently determined one-particle potential.O f Ha?tree—Fo?Ii) ptrhoé(cl)rrnavlv(i)tr;] pr:](;\g egf athsg?gaetuergs:‘%?nni]l?a?

At Hartree-Fock levelsee Fig. 1 the one-particle potential f the Miadal-El yhb i yt 3485 of electron-

is instantaneous, and the system may be described in termg the Migdal-tfiasnoberg treatm of electron
onon interactions. The quantitative accuracy of the ap-

of a modified Hamiltonian. In approximations beyond proximation may be improved by replacing the unrenormal-
Hartree-Fock, the potential becomes time-dependent, and the y P y rep 9

system must be described in terms of an action functional. Iszeelg-clcr)]rtg:gln(invlanrtéze ffr?(':rti;I#Ctgft'zgu'ggpgtgeﬁ%ﬁ\ggh a
A conceptually appealing approach for systems in which ' P P :

particle-hole or particle-particle pair fluctuations are large ispseudopotgnUaI may be determined by solving a set of par-
quet equations.

As mentioned above, previous FLEX studies have been
limited to the simplest tight-binding models. In Sec. Il below
we derive the most general form of the FLEX approximation
for Bravais lattices with an orbital basis and an arbitrary
instantaneous two-particle interaction. This extension allows

-

N
/

FIG. 1. Hartree(direc) and Fock(exchangg SCF diagrams.
Solid lines represent one-particle propagators, and dashed lines the FIG. 2. Simplest correlation contributions to the one-particle
two-body interaction. SCF.
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the incorporation of increasingly realistic features. Such fea-
tures must be included if the eventual goal is a predictive
capability for real materials. The crucial technical feature
which makes solution of such approximations feasible is the
introduction of a new basis sét?! for pair fluctuation
propagators. In Sec. lll we discuss a number of technical
points associated with solution of the FLEX equations for
multiorbital systems.

In parallel with development of the general formalism, we
specialize our analysis to the now standard three-orbital
model for CuQ layers in the cuprate superconductors. In
Sec. IV we present and discuss results for one-particle cor-
relation functions in this model, using a canonical parameter
set derived from density-functional studies and a variety of
other parameter choices. We summarize our analysis in Sec.

V, and briefly discuss the next phase of this calculational FIG. 3. Direct interaction verteXgy .o(RaRy ,RcRq). The po-
program, the analysis of two-particle instabilities in the GuO Sitionsr andr’ are integration variables.

model, and more general systems.

0o(k)= > e ARabh (AR,p). (6)
II. TECHNIQUE FOR GENERAL COULOMB ARap

INTERACTIONS This last form is convenient for SCF calculations. Note that

In this section we develop the form of the FLEX approxi- the quanntyh 26(k) may be treated as the () element of
mation for a general instantaneous local interaction in anatrix h°(k), dEfIHEd with indices in orbital space. The ei-
tight-binding model for a Bravais lattice with a bas{Fhis ~ genvalues oh® are just the one-particle band energies.
development may be extended to time-dependent interac- It is next necessary to develop a notation and formalism
tions in a natural way) for the two-particle interactionv(r—r’). The second-

Assume that the Bravais lattice consistsMfunit cells quantlzed interaction may be written in two equwalent forms
with periodic boundary conditions, and that each unit cellrelated by a “crossing symmetry.” The use of these two
contains a set of orthonormal orb|tm Assume in addi- forms Slmpllfles notation for the FLEX SCF and vertex func-
tion that orbitals in different unit cells are also orthogonal. Iftions. The “direct” interaction connects particle-hole states
the one- part|c|e Schd]nger Operator(e|ectron|c kinetic |n which the final and initial palrs are created at ponmand

energy+-Coulomb interaction with the lattigeis written  I'', respectively(see Fig. 3
ho(r), the second-quantized one-particle Hamiltonian takes
the form 22 fdrfdr o (1= 1)) (L (1) e (1):
Ho= h%(Ra,Rp)C! (Ry)Coo(Ry), (1) -
0= 2 2 2 Nau(Ra Ro)Cay(Ra)Cos Ry =13 3 3 VI (RRyRR)
oo’ ab,cd RaRb'RCRd
where
X :C;(r( Ra)cb(r( Rb)cg(ﬂ(Rd)CC(r'(RC): (7)

h3(Ra,Rp) = f dr ¢X(r—R)h% (N gy(r—Ry). (2 W

In these equation, is the origin of the unit cell containing  Vapca(RaRb 1R0Rd):f de dr' ¢ (r—Rgy) ¢p(r —Ry)
orbital a. Since the system is periodisl,(R,,R,) depends

only on the relative separation Xv(r—r")¢g(r' —Rg) de(r' —Ry).
AR,,=R,—Ry. 3) | ®)
. ] ] . In the subscript fov", ab is a compound index indicating a
It is convenient to Fourier transform using particle-hole pair in orbitals andb; likewise for subscript
cd. The colons indicate normal-ordering of the operator
1 CiKR product. _
Cap(Ra)= N % > e M Racl (k). (4) By translational invariance the Coulomb integvé&l" de-
pends on only three intercell displacemeftsise Fig. 4. It is
Thus convenient to adopt a notation which emphasizes this feature
by writing
Ho=2 2 X hykic,(K)eu,(k), (5) Vi cd(RaRo . ReRa)=Vap ca( ARaci ARan, ARGa), .

with where, for example,
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FIG. 4. Definition of the relative displacement variableR.

ARac=Ra—Rc. (9b)

The first argument o¥/" on the right-hand side is the dis-

placement from the particle in the initial state to the particle g 6. Exchange interaction  vertex VS, (AR, ;

in the final state. The second and third arguments are thgr_, AR.,). '

displacements from the hole to the particle in the final and

initial states, respectively. Using a crossing operation to flip theb” and “c” legs
The expression in E¢8) is more general than the Cou- in Fig. 3, the general_ interaction may be rewritten in an “ex-

lomb interaction used in most studies of tight-binding mod-change” form(see Fig. 6

els. It is conventional to restrict attention to terms in which

AR,, and AR.4 are both zero. This restriction is sensible y/— _%2 VEC (ARac;ARLp, ARGy)
since the orbitalgp,(r —R,) are assumed to fall off exponen- o abed RyRpRRy o °

tially: the productse} (r —Ry.) ¢p(r —Rp,) are small every- 4 + _

where unles®,=R,,. Furthermore, the largest contributions X:Cag(Ra)Cho' (Rb)Cqqr (Ra)Ceo(Re): 1D

to VI" arise from combinations wita=b andc=d. Com-  ith
binations which correspond to particle-hole pairs in different

orbitals (a#b or c#d) are also allowed, but are generally abcd(ARac;ARap ARcq)

small by orthogonality arguments. Note that these latter com-

binations include the exchange integrdlswhich arise in :f drf dr' ¢* (N o(r+ AR v (r—r')
atomic theory. a ¢ ac

As a concrete example, consider the three-orbital LuO * ,
model with short-range Coulomb integrals mentioned in the X ¢a (1" + ARact ARcq) (" +ARap).
Introduction. The orbital labels in this case range awverd, (12
px=X, andpy,=y. The unit cell is indicated in Fig. 5. The

) _ Note that this is simply a notational change, not a new inter-
nonzero Coulomb integrals retained are

action. The Coulomb integralé®" and V®*¢ obey the cross-

dir ing symmetry relation
Udd:Vdd,dd(O;Oyo)a dir exc
Vab,cd(ARac ; ARab yARcd) = Vac,bd(ARab ; ARac ,ARbd)-

Upp=Viex 0:0,0=V{) (0:0,0, (10 o _ (13
The minus sign in Eq(11) arises from the reordering of
_\ydir ) _ \dir . _\dir ) fermion destruction operator§The exchange form of the
Upa=Vaaxd0:0.0 =Vaaud +X:0,0=Vyxad 0:0.0 general interaction should not be confused with the exchange
=V3i>2dd(—?;0,0)ZVSE,yy(O;O,CD:VgZ,yy(+§/;0,0) i\r)gscg)rals mentioned above, which appear in bwffl and
=V3i;,dd(0;0,0)ZVS;dd(—g/;O,O). The FLEX approximation for interactiow can be gener-

ated using the formalism of Ref. 1 in a number of ways. For
maximum efficiency it is essential to label the fluctuation

. Cu d propagators using total pair moment@nand frequency()
0 (exploiting translational invariance in space and tirend
% by relative displacement coordinatA® and A7 (exploiting the
ﬂ]]]ﬂ]l’ O p short-range, instantaneous characte¥ pf
Y We begin by defining Coulomb integrals Fourier-
transformed on the displacement varialAle,.:

tpd di 2 iQ-A
_____ Vabcd( Qi ARGy, AR g) = >, e/ 4Rac

tpp ab,cd(Q ab Cd) &,

dir .
X
FIG. 5. Unit cell for the three-orbital CuOmodel. The one- Vab,cdl ARaci ARap, ARca),
body transfer integral,q andt,, are indicated. (14
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FIG. 7. One-particle propagat@mlmz(k).
FIG. 9. Fock contributiork ({2 (k) to the one-particle SCF.

and likewise forvV®. In order to calculat& (k,o) it is use-

ful to have the interactioW written out in terms of Fourier- 3 (1H) (k)= I E Z e ik-ARp
transformed fermion operators. Invoking Ed) one obtains MM N in, ARp ARy 5 v
172 12
di —n
1 X 2Vrr:r1m2,nln2(Q_OyAlemzaARnlnz)
v=1 =S g ik-ARangik’ AR
oo’ ab,cd ARy, ARy N kk'Q XE eik'-ARnlnzeiw'O+Gn1n2(k/). (17)

. k/
XV ca(QARp,ARcq)

: . For the Cu@ example, the nonzero sums collapse to
X Cag(K+Q)Cpy(K)Cy,p (K" )Ceor (K" +Q)z, (15

SGH(K)=Uga(ng) +2U pq({n) +(ny)),

and an analogous expression in terms\t¢. While the

sums onAR,, and AR.4 could be performed at this stage

[compare Eq(6)], it is important to retain the phase factors (1H)

explicitly. 2y (K)=Upp(ny) +2Upg(Ng),
Expressions for the FLEX SCF may now be written down__ .

. ) . with

in a computationally tractable form. We employ the notation

of Ref. 1, writing the one-particle SCE and propagato6 oT

as matrices in orbital spacesee Fig. 7. The combined (ng)= -, €9 Gyy(k) (19

momentum-frequency variabl&,i w) is abbreviatedk. The N &

propagator and SCF are connected by the relation

SO (k) =U () +2U pe(ng), (18)

and likewise for the other mean orbital occupancies.
The Fock contribution to the SCfFig. 9 is

G(k,o)={io—[ho(k)—u]-3(ko)} "%, (16) T
SUP (= =S D e ik-ARqy o
M1M2 N i, ARm my ARy,

with hy the matrix introduced in EG6). Note that the propa-

gator defined in this way has units of inverse enefayd xvﬁflcmzynlnz(QzO;Alemz,ARnlnz)
differs by a factor ofT from the definition in Ref. L
The Hartree contribution to the SCFig. 8 takes the o o ,
form J x> ek ARung’0'G, (k). (20)
k/
For the CuQ example,
k/
S5 (K) == 3Uga(ng),
EiiF)(k)z - %Upp<nx>'
(21)
T . -
120 2500 = Upg iy 2 [1+e® e 0 Gy (K),
1 kr
! ‘ 0=0 T
: S0 =-Upa g > [1+e7 6160 Gy (k).
my i m; K’
k k Expressions fox ({7, 3 {F), and = (i follow by letting

Xx—Y in these equations.
Note that the Hartree and Fock terms may be neatly com-
FIG. 8. Hartree contributioi (') (k) to the one-particle SCF. bined as
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FIG. 10. Second-order correlation contributi(ﬁlﬁfmz(k) to the

one-particle SCF. Note that the use of the density verttallows
writing these terms as a single diagram.

T .
EET})m (k)== 2 2 e 'k-ARmm,
12 N niny AlemszRnln2

d .
X lem2 ,nlnz( Q=0A lemzyA Rnlnz)

XE eik’-ARnlnzeiw’OJanlnz(kr), (22)
k/
where

V4(Q)=2v¥(Q) - V¥{(Q). (23

The interactiorv? is just the coupling between density fluc-

tuations(i.e., S=0 particle-hole pairs
For second-order contributions to the S(Hg. 10, the
corresponding expression is

T
(2) -
Emlmz(k)_ N E

niny Alenl'ARmz”z
% % efi(k*Q)‘(AlenlfARmznz)Gnlnz(k_ Q)

X(VIVI) o mony(QiARM 0 ARy ),
(24)
where

— T )
. — k" (AR —AR
Xflslrfzsz(Q’Aersl'Aersz)__N 2 el (B, 2%
k/

(k"),
(29

XGr (K +Q)G

S281

and the producv¥yVv" is defined using the matrix multipli-

cation

<AB>ab,cd<Q;ARab,ARcd>E§ A; Aabij(Q;ARLp, AR;)
ij ARj
X Bij cd(Q;ARjj ,AR¢g)  (26)
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Q
—————-
c > a
AR_4 AR_;
d = b

FIG. 11. Definition of unit-cell displacements and total
momentum-frequenc§) for the uncorrelated fluctuation propagator

Xab,cd(QiAR,p ARGy

The quantity xap ca(Q;ARLp,ARg) is the uncorrelated
fluctuation propagator for a particle-hole pair with total
momentum-frequenc®); initial and final relative time dis-
placementAr=0; and initial and final relative unit-cell dis-
placementaAR.4 andAR,,, respectively(see Fig. 11

(T,cl(Ry, 7)Ca(Ra, 7)CI(Re,0)Co(Rg,0)) ™
T - -
:N > |(Q‘ARaC_QT)Xab'Cd(Q;ARab ,ARCd), (27)

where the subscript “sc” denotes evaluation with the SCF
action and

(04(1)0)8M=(01(7)02)sc— (01)sdO)sc.  (28)

Note that the fluctuation propagator may be treated as a ma-
trix in the combined space of particle-hole orbital indieds
and relative displacementsR,, .

Finally the remaining particle-hole fluctuation contribu-
tion (see Fig. 12to the FLEX SCF may be written

.
Shm=g 2 XX

niny AlenleRmznz Q

% efi(k*Q)'(AlenlfARmznz)Gnlnz(k_ Q)
X[$VI(D XV
+3VIM = X)V ™m0, mon,

X(QiARm n ARm o), (29

B2l I3

155

FIG. 12. Density fluctuation exchange contribution to the one-

for general n;atriceA andB. Note that the use of the density particle SCF. A similar term appears representing the exchange of
interactionV® allows grouping the two contributions from magnetic fluctuations. Note that the fluctuation propagatdr-isy,

Fig. 10 in a single equation analogous to equat@B0b in
Ref. 1.

rather thanD. The subtraction prevents the double-counting of
second-order terms.
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TABLE I. Indexing scheme for the particle-hole basis set in theNote thatQ is measured in units of the inverse lattice con-
CuO, model. The particle orbital ia, the hole orbital i, and the  stant.
unit-cell displacement from hole to particle &R,,. The direct
interaction vanishes except for states with indices 1-3, while the
exchange interaction has nonzero matrix elements for all 11 indices.|ll. SOME DETAILS OF THE SOLUTION ALGORITHM

Index a b ARy The FLEX solution of the Cu@model may be divided
into four computational stepsi) calculation of the uncorre-

1 d d 0 lated fluctuation propagatorg;;(Q,i{2) as convolutions of
2 Px Px 0 the one-particle propagat@®.,,; (ii) matrix inversion to find
3 Py Py 0 the correlated fluctuation propagator®!;;(Q,i{2) and
4 d Py 0 Di;(Q,i€); (iii) calculation of the one-particle SCF matrix
5 d Py +X 3 (ki w); and (iv) matrix inversion to find the one-particle
6 Dy d 0 propagatoiG,,(k,i w). Note that the indicesandj run over
7 Py d —X 11 values, whilea andb run over only 3.
8 d Py 0 The most time-consuming steps are the convolutions used
9 d Py +y to evaluatey;; and2. ., . Fast Fourier transforms may be used
10 Dy d 0 for this purposé. However, we have found it efficient to
11 By d -5 proceed using a combination of methods applied to one-

orbital models in our earlier work®° The frequency-space
renormalization group introduced in Ref. 5 is applicable in
again employing shorthand notation for the matrix multipli- the present study with only minor modifications.
cation in Eq.(26). The matrixV™ is the coupling between ~_Rather than accumulating two scalar functioh® and
magnetic fluctuations, and the matri@@sandM are fluctua- Ax to account for renormalization corrections from regions
tion propagators for densityS0) and magnetic $=1) of high frequency, it is necessary to generalize to matrix
fluctuations: functionsAZ,, andA x;; . In addition we have modified the
previous algorithm in two ways to gain improved accuracy.
VT(Q)=—-V(Q), (300  These modifications are as follow8) improved interpola-
tion, and(ii) special treatment of the first-order self-energy
3@ Previously piecewise linear interpolation and extrapola-
_— d/ 71— 1 tion have been used to cary?, andA y from one Matsubara
DQ=x(QL1+VAQX(Q1 ", (31) frequency mesh to a finer mesh for use at reduced tempera-
_— M7y 1—1 ture. In the present work piecewise quadratic interpolation
MQ)=x(QILH+VHQX(Q)] ™ and extrapolation are found to be superior. Particular care is

In order to perform calculations for a model with short- 'éguired in the vicinity of the dividing point between “high”
range interactions, it is convenient to enumerate all combi@nd “low” renormalization regions. When interpolatinig~
nations of the compound orbital indesb and displacement Nt the new “low” region mesh, we have found it prefer-
vector AR,,, for which matrix elements Ovd(Q) or V™(Q) able tc_) use oply _Iow region data..The only exceptlt_)n is
are nonzero. For the CyQnodel there are only 11 such for points which lie between the highest frequency in the
combinations, and the particle-hole interactions and fluctua-I0W” region and the lowest frequency in the “high” re-
tion propagators may be stored compactly ax11 matri-  9i0n; in this case a single point from the “high” region
ces. One possible indexing scheme is indicated in Table ghould be used in the interpolation. Similar care must be

With this choice of basis, the interaction matrices are as fol€X€rcised in the interpolation df x to avoid slope disconti-
lows: nuities associated with the multistage fermion cutoffs.

The second modification of previous algorithms concerns
V4(Q)1;=Uqq, the treatment of the first-order self-energy. This quantity
generates a temperature-dependent, instantaneous term in the
V4(Q)2=V4(Q)s3= Upp. self-consistent action functional. To calculate a smooth
propagator it is essential that teamefirst-order self-energy
Vd(Q)lzzvd(Q)zlz2Upd(1+e—iQx), (320  appear in all frequency components. This means At
cannot be “folded down” using a standard frequency-space
Vd(Q)lSIVd(Q)ngzupd(lJre—iQy), renormalization group(In single-orbi_tal models th_e first-
order self-energy may be absorbed into the chemical poten-
dyy, — - tial, leaving only a frequency-dependent self-energy which
VAQii==Upa, 1=45,...11, vanishes forw—. This redefinition of the action is not pos-
and sible for multiorbital models, in whiclE® is a matrix) In
fact, we have found within the CyCGFLEX solution (see
V™(Q)11=—Uqq, Sec. V) that 3 varies little with temperature below
T/tyq=0.25.(The variation is smallest negn)=1 and in-
VT(Q)22=V™(Q)3z=—Upp, (33 creases a¢n) varies from unity) In order to take into ac-
count this variation, we have found it convenié€atto delay
VT(Q)ii=—Upg, 1=45,..,11 commencing the renormalization group unfilt,,=0.25,

and
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Brillouin zone maps to a poirk (Q) in the irreducible wedge
(Fig. 13 after applying symmetry operatiotigversion, ro-
tation, reflection, or a combination of thesket a andb (i
andj) represent the orbitdbrbital pair and relative separa-
tion) labels for a correlation function evaluateddt (Q’),
with sym(@) and symbp) [sym() and sym()] the corre-
sponding labels for the point in the wedge. Let the CM trans-
lations corresponding to this symmetry operationsBg and
R, (6R; and éR;). Then

Gapn(k' iw)=e* Ra=RIG o) vy (Kiiw)  (34)

and
FIG. 13. Irreducible wedge in the square-lattice Brillouin zone. Xij(Q,iQ)=e' @ OR=R)y i) symi)(QiiQ).  (35)
lei,\ wave vector is measured in units of the inverse lattice ConStarEorresponding relations hold for the matricﬁsand;

a . S
As an example, consider a point wi@y=—Q, andQ,

= —Q,, whereQ is in the irreducible wedge. The symmetry
Pperation which carrieQ’ onto Q is inversion, followed by
reflection acrosg=y. If i=6 andj=11 (see Table), then
f it may be shown that symf=11, sym{)=6, 5R;=—y, and

ization procedure, i.e., by summing the propagator over al
frequencies(This calculation adds little to the overall com-
putational overheaylFor the frequency-dependent parts o ~
the self-energy, renormalization proceeds as before, i.e., r@qi: —X. Thus,

ions of frequency space are sequentially eliminated with CO i (O ;
gecreasing '?empe)r/atuee. It is interqesting tg note that, while Xoa ~Qy, = Qu i) =€ d Q. Q) 12).
the results we report in Sec. IV are calculated with fixed

chemical potential, this modified renormalization-group For a 16<16 k-space discretization, the number of grid

scheme makes it possible to calculate accurately for fixe@oints to be calculated is reduced using symmetry operations

density as well. from 256 to 45, a factor of nearly 6. For finer discretizations,
A final note is in order concerning the Fourier transforma renormalization group treatment of tkespace(or a fast

of renormalized quantities, including(k,iw). Before sum-  Fourier transform algorithfi» would eventually become es-

ming on frequency it is essential to interpolate such quantisential.

ties onto auniform mesh corresponding to the current tem-  As a final point we note the criteria employed for declar-

perature. Otherwise, the resulting Fourier transform isng convergence of the FLEX equations. L&t" be the

contaminated by ripples arising from the breaks in mestpne-particle propagator at the end of thi iteration. The

scale. equations are assumed to be converged to self-consistency

An additional calculational detail is the use of discretewhen, for every matrix element and valuelgf(i) the abso-
rotational symmetry to reduce the size of the computationute error|G"*Y—G("| is less than a toleranagy,; or (ii)

with respect to spatial variables. For the square Cla@ice,  the relative erroniG(””)—G(”)|/|G(”+1)| is less than a tol-
the quantitie, G, x, andx may be calculated fok andQ  erances,,. We have chosen the valueg,=1x10° and
restricted to a triangular wedge in the first Brillouin zone g =1x10"* throughout.
(see Fig. 1B then extended to the full zone by symmetry
operations. Note that some care is required since the indices IV. RESULTS AND DISCUSSION
ab andij must be transformed along with the wave vectors
k andQ. In addition to changes in the orbital labels and the In this section we describe results from FLEX calcula-
relative separation of particle-hole pairs, changes in theions for the three-band Cy@nodel used frequently to treat
center-of-masgCM) unit-cell position may be induced by the high-temperature superconducttrsThis model de-
symmetry operations. For example, under rotationsbyhe  scribes a two-dimensional square Bravais lattice with one Cu
p, orbital in the unit cell with originrR maps to the, orbital  ion and two O ions per unit ce{see Fig. % A single tight-
in the unit cell with originR—X. This translation by one unit binding orbital is retained on each ion in order to describe
cell with respect to the original basis induces an extra phasthe dominant parentage of Fermi surface particles. These or-
exp(zik-X) in the symmetry relation for the propagator bitals are(a) the 3d,2_,2 for Cu ions;(b) the 2p, for O ions
G(Kk). on horizontal bonds; angt) the 2p, for O ions on vertical
One might also be concerned about the possible appeabonds. In the high-temperature superconductors the three or-
ance of minus signs associated with a change in phase ditals are nearly filled, and it is conventional to write the
orbitals after a symmetry operation. Singeorbitals always Hamiltonian using creation operatar for holes.(To main-
appear irpairsin the correlation functions of interest afi  tain continuity with the general discussion in Sec. Il we con-
the convention for orbital phases has been chosen so that dilhue to refer to the states createdddyas “particles,” rather
orbitals pick up the same sign after application of a symmethan as holes or electronslhe density range of interest is
try operation, extra minus signs do not appear. (n) of order unity, i.e., one hole per unit cell. Fon) less
With these points noted, the symmetry relations may be&han unity, the system is said to be “electron-doped”; for
stated as follows: Suppose that a general poirfQ’) in the  (n) greater than unity, “hole-doped.”
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the values ok labeling the same one-particle state within the
checkerboard and uniform phase schemes diffefyy). In
other words, thd" point (Brillouin zone center within our
calculation corresponds to thé point (Brillouin zone cor-
nen within the alternative labeling scheme; a rigid shift of
(7r,7m) along the zone diagonal transforms one band structure
into the other. Note, however, that the total wave veQaf
particle-hole and particle-particle pair states igentical
within the two schemes.

The “on-site” terms inh® (which do not depend on the
orbital phasesmay be written

hJ4R,R) =¢q4,

(39
FIG. 14. Choice of phases for the Cul,3_,2, O 2p,, and O hgx(R!R):hgy(RyR)ESp:&‘d"‘S-
2py orbitals in the Cu@ model. The full one-particle Hamiltonian takes the form
It is conveniem? to choose the orbital phases in the .
checkerboard pattern of Fig. 14, so that corresponding orbit- Ho—MNZ(Sd_M); nd(R)+(8d_M+8); [N«(R)
als in adjacent horizontal or vertical cells differ in phase by
—1. With this choice the nearest-neighbor transfer integrals :
are all equal. In the notation of El), +ny(R)]_tpdzR [Cao(R)Cxo(R)

hye(RR)=ha(RR)=h3(R.R+%) + ¢l (R+K)Cyo(R)+ Lo (R)Cyo(R)

=hGx(R+%,R)=—tp, (37) + ¢l (RH9)Cyy(R) +H.CJ
with t,4 a positive numbefin the hole Hamiltoniah A simi-
lar relat|on holds forh Od and h0 It is trivial to allow an _tppz [C;U(R)CXU(R)JFC;U(RJF X)Cyo(R)

O-O transfer integrdl,, in addltlon note that with the phase

convention in Fig. 14tpp has the same sign &sy. Thus, +C;U(R—§’)CXU(R)+CJU(R+§<—§’)CXU(R)

+H.cl]. (40

=hy,(R=,R)=—tpp, (38) It is more convenient to work with the Fourier-transformed
and so forth. Hamiltonian

h9«(R,R)=hJ(R+X,R)=hJ (R+X—Y,R)

It is important to note how our choice of orbital phases
affects the one-particle band structure. An alternative to the Hy—uN= 2 2 2 [h2,(K)— wdaplct (K)Cp,(K),
checkerboard pattern is the choice of a uniform phase in all
unit cells(so that the positive lobes of allp2 orbitals point (41)
to the right, for instancde It is straightforward to show that where

&4 —tya(1+e ™) —tya(1+e7 %)
ho(k)=| —tpa(1+e™¥) eqte —top(1+e ) (1+e ™) |, (42)
—tpa(1+€%y)  —t,(1+e ) (1+e'y) eqte
|
with the states labeled— 1, x—2, andy—3. Hartree-Fock and FLEX results for the one-particle band

As discussed in Sec. Il, the Coulomb interaction in thestructure in Sec. IV D and plot the orbital occupancy factors
CuG, model is usually truncated at near-neighbor separatiom,,(k) in Sec. IV E. Finally we discuss results for the real-
Three different Coulomb integrald 44, U,,, andU,4 are  frequency spectral densities corresponding to one-particle

retained, as in Eq.10). excitations(Sec. IV B and particle-hole fluctuationéSec.
We begin our discussion of the CyBLEX solution with IV G).2
brief sections ork-space discretization err¢gec. IV A) and Throughout these sections we refer to a “standard param-

error from the use of the frequency-space renormalizatiomter set” based on the constrained-occupancy LDA calcula-
group(Sec. IV B. We then examine the most unstable chan-tions of Hybertsen, Schier, and Christenséffor La,CuQ,.

nels in the 1X 11 zero-frequency fluctuation propagators for Energies are measured in units of the nearest-neighbor trans-
magnetic and density fluctuationSec. IV Q. We survey fer integralt,y, and the 8,2 ,2 on-site energy, is set to
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zero. The “standard parameter set” is as follows:

0.00 . . . .
the=1.3 eV, Gaa(k,T)
-0.10
e=3.6 eV=2.73,,
-0.20
typ=0.65 eV=0.9q,
(43 -0.30 | ]
Udd210.5 e\V= 8tpd! —
Upp=4 eV=3t,, 040
Upa=1.2 eV=t,q. | 1
We examine particle densities corresponding to both “elec- —0.60 f e 5%16 @
tron doping” ((n) less than 1 and “hole doping” ({n) — = — 4X4
greater than )1 For comparison with other studies, note the 070 & : : - -
comment on orbital phases akespace band structure at the 0.00 0.20 0.40 0.60 0.80 1.00
beginning of this section. /8
0.00
IV. CuO, FLEX SOLUTION Gulker) | 3
A. Discretization error

In this paper we predominantly employ<8 and 16<16 020
discretizations of the square Brillouin zone to solve the
FLEX equations. In Fig. 15 results for thedependent one- —0.40 |} _
particle propagator& y4(k,7) andG,,(k,7) are compared for
calculations on a %4, 88, and 16<16 mesh using the
standard parameter set. The wave vekte(n/2,71/2) is cho- 060 ]
sen to lie near the Fermi surface fam)=0.875 (electron
doping. The temperature i$/t,4=0.016.

A similar comparison for the magnetic particle-hole _080 L 16X16 j
propagatoM 1,(Q,7) is shown in Fig. 16. The wave vector | ... 8X8 ®)
Q=(r,7), and other parameters are as in Fig. 15. It is useful . T T x4
to split this propagator into “dc” and time-dependent com- -1.00 . . - -
ponents using Eq$27) and (31): 0.00 020 040 060  0.80 " 1.00

T

M11(Q,7)=TM11(Q,2=0)+AM4(Q,7). (44
. . . FIG. 15. Effect of lattice discretization on one-particle propaga-
The time-dependent componefitig. 16a)], like the one- (515G in the Cug model. The standard parameter E&q. (43)] is

particle propagator, is only weakly dependent on the discretiampioyed with(n)=0.875(electron dopingandT/t,4=0.016. Re-

zation scale. The dc component has a much stronger varigyits are shown for wave vectar=(m/2,m/2). Arrows indicate the
tion with the discretization scale at low temperatufEs). intercepts atr=0" and7=8". (a) Gqq. (b) Gyy.

16(b)]. This variation is expecteht least within the FLEX
approximation, since the static magnetic response attored. In Fig. 17 we compare results for the propagators
Q=(m,m) is divergent forT—0. Note that the scale depen- G44(k,7) andG,,(k,7) for an 8<8 k-space mesh, a simplified
dence at this single point iQ space is only weakly reflected parameter set Wit ,,=U ,4=0, (n)=0.875(electron dop-
in other components of the one-particle and particle-holéng), T/t,;=0.031, andk=(w/2,7/2). The results were ob-
propagators. tained first using a full brute-force solution, then using a
For the temperatures studied in this papeft{;=0.016) five-step renormalization group. Both the full and the
the maximum error in working with an>88 rather than a renormalization-group solutions assume a frequency-space
16x16 discretization is of order 0.5% for the one-particle cutoff atQ)/t, 4= =50. The corresponding result for the mag-
propagator and 2% for the particle-hole propagéaidth the  netic particle-hole propagataxM;(Q,7) with Q=(m,m) is
exception of the divergent dc magnetic component discusseglotted in Fig. 18. For the range of temperatures studied in
abovg. The results in Secs. IV D—IV F are obtained exclu- this paper we estimate the maximum error introduced by the

sively for a 16<16 discretization. frequency-space renormalization group to be of order 1% for
one-particle and nonsingular two-particle propagators and
B. Renormalization-group error 5% for the singular magnetic propagator.

As discussed in Sec. lll, the frequency-space renormaliza-
tion group(RG) introduced in Ref. 5 is used to reduce com-
putational time and storage requirements. The RG procedure The FLEX approximation is framed to describe the ex-
is approximate and introduces errors which must be moniehange of particle-hole fluctuations between one-particle ex-

C. Eigenvalues of the fluctuation kernel
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0.40 T T T T 0.00 T T T T
AM11(Q,T) Gad(k,T)
16X16 —0.10 | ]
........... 8)(8
030 | — — — 4X4
—-0.20
0.20 —0.30 .
0.10 -~0.40 1
-0.50 h
0.00 E
—0.60 t Full
(a) ) (a) ———RG
-0.10 L L 1 1 —-0.70 &= ! | 1 '
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
/8 T/8
0.40 0.00 T -—— T
Gux(k,T)
T™™n(Q, Q=0) 16X16
-0.20 k
0.30 |
-0.40 b
0.20 }
-0.60 b
0.10 |
-0.80
8 ®) Full
b — —— RG
(b) a
-1.00 : ' ' '
0.00 .
0.01 0.02 0.05 0.1 0.2 0.5 1 0.00 0.20 0.40 0.60 O.80T/ﬁ 1.00
T/tpa

FIG. 17. Validation of renormalization-group calculations for
the one-particle propagatd@®. A simplified parameter set is em-
ployed withU,,=U,q=0, and other parameters set to their stan-
dard values. The lattice discretization i$8, with (n)=0.875
(electron dopingandT/t,4=0.031. Results from a full brute-force
calculation are compared with results from a five-stage renormal-
citations. In the model treated here, particle-hole correlationization group. The wave vectdr=(7/2,7/2). (@) Gyq. (b) G,y .
are instantaneous, and ti%=0 andS=1 propagators are
11x11 matrices in the combined space of orbital labels and The particle-hole fluctuations may be monitored quantita-
unit-cell separations. It is of interest to determine the fluc—tivelc}/ by diagonalizing the 1%11 matrices(see Sec. )I
tuation “channel” which becomes most unstable as the sys—V(Q)x(Q) and —V™Q)x(Q), after iterating the FLEX
tem temperature decreases. The nature of the FLEX approxéquations to self-consistency. The dominant instabilities al-
mation assures that the correlated propagators do not develogays occur forQ)=0; further, by symmetry, it is only neces-
actual singularities at finite temperature. Nevertheless fosary to consideQ in an irreducible Brillouin zone wedge
most parameter sets a single magnetic or density channé&ee Sec. I). The dominant channel is the eigenvector with
dominates the low-temperature physics, altering the lifetimehe most positive eigenvalue. Note, as discussed above, that
of one-particle excitations and biasing the nature of a potenall finite-temperature FLEX eigenvalues are smaller than
tial superconducting state. The identity of the dominant fluc-unity (though an eigenvalue may smoothly approach unity
tuation channel has been a subject of past delfat€?-2°  with decreasing temperature
particularly with regard to the effect of the near-neighbor It is important to note that the eigenvalues determined in
Coulomb integralu,4. At issue has been the competition this way arenot the same as the instability eigenvalues cal-
between a larg€, S=1 channel (an antiferromagnetic culated in previous studies of superconductivity in Hubbard-
3d,2_,2 spin fluctuation and aQ=0, S=0 channel(a uni-  like models>®~° To calculate conserving susceptibilities
form density fluctuation involving charge transfer from within FLEX one must first determine the appropriate irre-
3d,2_y2 to 2p, and 2, orbitals. ducible vertex functiond.Since FLEX is not consistent at

FIG. 16. Effect of lattice discretization on thd-orbital-
projected magnetic particle-hole propagatbr,. Parameters are as
in Fig. 15, and the wave vect@=(,7). (a) Time-dependent part
of the propagatoA M 14(Q, 7). (b) Zero-frequency component of the
propagatorm M4(Q,Q=0).
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pressed, by the Coulomb interaction. Naive arguments based
on the particle-hole density of statét least fore~0) again
Full suggest binding at larg®. In comparison, the density chan-
———RG nel in the one-band Hubbard model is always suppre&sed.
] The charge-transfer channel, which has been the
subject®-2025-2% several previous studies, is not superfi-
cially evident from the form of the interaction matrix. It de-
pends on the presence of the off-diagonal matrix elements
Vv4(Q);, and V4(Q),5. These matrix elements vanish at
Qx=Qy= and are maximized fo@,=Q, =0 at a value of
4U 4. Their presence allows the formation of a bound state
containingd-d andp-p components witloppositesign. The
density-wave order parameter corresponding to this eigen-
vector has a charge deficit in thi orbitals and a charge
surplus in thep orbitals: such an order parameter reduces the
~0.10 . . . : repulsive Coulomb energy contributed by particles on adja-
0.00 020 040 060  0.80 1.00 cent sites. The fact that the off-diagonal matrix elements are
T/8 maximized forQ=0 insures that the most unstable charge-
transfer channel is uniform, not staggergdiote that a
FIG. 18. Validation of renormalization-group calculations for POUNd state also arises due to repulsive off-diagonal matrix

. . . _10.
the time-dependent part of the magnetic particle-hole propagatd?lements in treatments afwave superconductivit®*°in

AM,,. Parameters are as in Fig. 17. The wave veQer(m,m). the one-band Hubbard model. _ _
To determine the dominant fluctuation channel for a wide

range of parameters in the Cu@odel, we have performed
a survey starting from the standard parameter set for both
hole doping (n)=1.125) and electron dopingrf)=0.875).

0.40 T T T T

AM11(Q,T)
0.30 |

0.20

0.00

the two-particle level, these functions differ from the input
interactions(For example, in this paper we neglect particle-
particle interactions in calculating one-particle SCF’'s. Nev- ,
ertheless, the resulting particle-particle susceptibilities ar%etalled results are repo_rted here fo_r the hoIe-dope_d case.
nontrivial and may show a tendency toward superconductiv- esults for elec_tron doping are qualltatl_vely quite similar,

ity.) Vertex corrections do not appear in the fluctuationand the conclusions reached below survive intact. The tem-

propagators which enter the one-particle SCF calculatio perature T/, is fixed at 1/64-0.016, a value sufficiently

[Note that in FLEX calculations for the one-band Hubbard ow to 3{|eld tZe c_orrect e|genvaluehorder fﬁ;—>h(_).h(1;he
model, the eigenvalue calculation discussed here is trivig/®'9€nvalue order in some cases changes at high tempera-

The magnetic and density kernels becomélImatrices with Lurles) The_ kégpa;cihdlscret!zatlon _scale '|9<8' Inf ttﬁe plots i
eigenvaluest Ux(Q,02=0).] elow we indicate the maximum eigenvalues of the magnetic

In order to describe the physics of the competing chanf’md density kernels on a logarithmic scale based on the de-

nels, it is convenient to speak somewhat loosely of “particle—v'at'on from unity. This scale allows a close examination of

hole binding.” In fact, no actual binding instability occurs the behawor of nearly s_mgular elgenva_llues. .

(at least in the FLEX propagatgronly resonant scattering. In_F|g. 19 the variation of the maximum magnetic and
From Egs.(32) and (33) it is clear that the most attractive density channel agenvalue)sm and\g, as a function of the
interaction matrix element for the standard parameter set itgare Ieyel separation|is plotted for three values Mpd.’ the
V™(Q);1, which scatters ars=1 on-sited-d particle-hole near-n.e|ghbor 'repu.IS|on. Note that fbrpd:o. therg IS no
pair into itself. The wave vector for binding is determined by aftractive density eigenvalue. Furpd/tpd.: : (mclu_dmg the
the particle-hole density of states, which enters the Calculag’tandard parameter _ﬁ;;ethe most attractive density chan_nel
tion through the uncorrelated propagator majyiQ,Q=0). Is a Q=0 mixed-orbital state. As noted above, one might
For the square lattice wittin) close to unity, this suggests have guessed .the preferred wave vector wou_ld(bgr),
binding in a largeQ, S=1 state with dominand-d parent- base‘?' on densﬂy-of-statgs_effects alofie densny elgen-
age. The amount of admixture of the other ten particle-holé’alue S depender_lce @ IS 1n fac; very weal_< in this case.
basis states is determined by the relative sizeJgf and Shne:}r/ (];?'[r:npsdf/;?ds;aﬁeISTLheevS:vrglczgto?i?stﬁs (;T:mlfgl) the
Upq- [Itis interesting to note that fo@=(,7) the matrixy 9 ' QD)

has a special symmetry which results in the exact vanishin s_expected, foe/t,q=0.5. [For smallere, the wave vector
_ _ ; . Shifts away from 0 towardn/2, 7/2), though the dependence
of the p,—px and p,—p, components of the dominant ei- .
genvector] onQis wegk] As an example, fol 4/t,q=4 ande/t4=1,
In the density matrix/%(Q) the only matrix elements with the normalized eigenvectah has
an attractive real part occur on the diagonal, scattering

mixed-orbital particle-hole statésuch as an intracetl par- Q=0,

ticle andp, hole) into themselves. For the standard param- )

eter set these matrix elements are small in comparison with (1] $)|*=0.722,

those in theS=1 channel, and magnetism is expected to (45)
dominate. Nevertheless, the presence of negative diagonal (2| $)P=13|)[?=0.135,

matrix elements in th&=0 interaction matrix suggests that
at least one density channel is enhanced, rather than sup- [(m|#)[?=0.001, m=4,...,11.
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™ ™ 500 | i enr/ tpd
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FIG. 19. Maximum magnetic and density channel eigenvalues |G, 21. Variation of theT—0 Hartree-Fock level separation
of the FLEX interaction kerne'),\m and )\d! as a function of bare SHF/tpd as a function of the bare level separatmpd_ Other pa-
level separations/t,q. Results are shown for three values of rameters are set to their standard values, (@me 1.125.
Upd/tpa, With other parameters set at their standard values. The
particle density is{n)=1.12_5(h_ole doping, and the temperature is dges the eigenvalue ordering change so that the charge-
fixed at T/tpd:0.0lG. Solid Ilnes_ and closed symbols representiansfer channel dominates: at such high temperatures neither
magnetic eigenvalues; dashed lines and open symbols represqpgiapility is sufficiently strong to have an important effect.
density eigenvalues. The eigenvalue axis is logarithmic in the de- The first observation with regard to the magnetic eigen-
viation from unity. See the text for identification of the eigenvec- values in Fig. 19 is that they are always close to unity, domi-
tors. nating the low-temperature physics. The dominant magnetic

, wave vector iQ=(,m) for all parameters studied witn)
The (2|¢) and(3|¢) matrix elements are equal and have the_ 1 175 The eigenvector is in most cases concentrated on
opposite sign fron{1|¢). (Refer to Table | for identification e g orpital (basis state )1 and the coefficient of this state
of the basis statgsThe important point to note is that even jnreases aslt,q is increased.

for Upg/tpg=4 (i.e., Upy/Uqq=0.5 the charge-transfer ei- 14 ngerstand the effect @fit,q, it is useful to monitor
genvalue remains significantly smaller than the magnetic €if,e Hartree-Fock level separation

genvalue at low temperatures. Only for larBq (Fig. 20
Eyp=¢e+ %Upp<nx> - %Udd<nd> + 2Upd[<nd>_ <nx> _<neﬁé)

.995
Am, A 992 - Upa/toa=4 - as a function ofe; see Fig. 21. For small positive the
.990 | Hartree-Fock level separation is actually negative, indicating

e/tpo="1 that thep levels lie below thed. For largere the renormal-

ized level separation becomes positivthe so-called
970+ - “charge-transfer regime” for the high-temperature
superconductot$?9. As ¢ continues to increase the system
eventually crosses over to a regime completely dominated by
‘838: 1 the d orbitals which may be described using an effective
’ one-band modé&t (the “Hubbard regime?.

As an example, for the standard parameter set
(e/tgg=2.75 andU ,4/t 4= 1), the dominant magnetic eigen-

950 4

700

vector has
.500 4
200 - Q=(m,m),
.000 i N
0.01 0.02 0.05 0.1 0.2 05 1 2 |<1|¢>|2=0.987,
T/tped a7

K2l ) P=I(3]#)I*=0,
FIG. 20. Temperature variation of the maximum magnetic and
density channel eigenvalues. The valuedJgfy/t,q ande/tyy are |<m|¢>|2:0_002, m=4,...,11.
set to 4 and 1, enhancing the Cu-O charge-transfer process. Other
parameters are as in Fig. 19. Note that the magnetic channel donfiAs remarked previously, foQ=(m,), the uncorrelated
nates up to a temperature of ordft,4=0.15. propagator matrix becomes block-diagonal, and basis state 1
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FIG. 22. Maximum magnetic and density channel eigenvalues FIG. 23. Maximum magnetic and density channel eigenvalues
as a function of bare level separatiert,q for three values of as a function of bare level separatiaift,q for two values of
Upp/tpd' Other parameters are set at their standard values. Th&)p/tpd' Other parameters are set at their standard values. The par-
particle density and temperature are as in Fig. 19. ticle density and temperature are as in Fig. 19.

decouples from 2 and BAs ¢ decreases, the admixture of
states 2 through 11 grows. Furthermore, tonear 0 and
large U4, the dominant eigenvalue may actually become,
twofold degeneratébecause basis states 2 and 3 take ove
the role played by 1 For example, fore/t,q=0 and
Upd/t,a=4, the magnetic eigenvalue is degenerate, and an
eigenvector concentrated on the orbital has

increased to 3in the standard parameter et 6, this chan-

nel is suppressed, and tig@g=0 mixed-orbitald-p channel
becomes dominant. As an example, for the standard param-
Eter set the density channel eigenvector has

Q:01
Q=(m,m), (49)
(1| #)P=0, km|$)?=0.125, m=4,...,11,
(2] 4)|?=0.050,
(48)  with negligible admixture from states 1, 2, and 3. In all cases
(3] #)[>=0.590, the dominant density channel is much weaker than the domi-

nant magnetic channel.

While density-functional studies indicate the presence of
a p-p transfer matrix element about half as big as fhe
matrix element* most previous model studies have omitted
this effect. We examine the effect gf, in Fig. 23; all other

[{m|¢)[?=0.007, m=45,6,7,
|(m|$)[?=0.083, m=8,9,10,11.

Next we consmjer the rple of t.he Coulomb repulsion ONparameters take their standard values. The eigenvalues
the p, and p, orbitals. This matrix element has been ne-

glected in most previous studies, even though it is expecte?hange only S“.ghtly Wh.empp IS turngd off. Th(_a only quali-
. L ative change in the eigenvectors is the shift of the wave
to be the second largest interaction in the model. One expecvsector for the dominant mixed-orbital density channel from
Uy, to suppress the charge-transfer channel, since it in- "~ - . y
creases the energy penalty paid for moving charge from th@ =010 Q_(”’T_’)' As noteql previously, the wave-vector de-_
d to p orbitals. In Fig. 22 we plok, and\ 4 versuse/t,q for pendence of this channel is \_/vez_il_<, and the shlft in the maxi-
Upy/tpe=0, 3, and 6, with other parameters in the standardum does not rep_resept a_5|gn|f|cant change in t_he_ phys_lcs.
set. The effect on the dominant magnetic channel is slight: Finally we consider in Fig. 24 the effect of variations in
The eigenvalue decreases slightly with increasihg, for Uqq, With other parameters fixed at their standard values. As
largee, a trend consistent with the suppression of virtligy ~ €Xpected, the larg@ magnetic eigenvalue is suppressed sig-
hopping processes by increased repulsion ingherbitals.  hificantly whenUy4/t,q is decreased from 8 to 2, but the
The character of the eigenvectors is almost unchanged. Foragnetic channel remains dominant. The reductiort g§
the density channels the effect is somewhat more dramati@lters the identity of the dominant density channel in the
though not evident in the figure. The maximum eigenvaluesame way noted previously for an increaseligy: for all
decreases as expected, but the more important variation apgalues ofe in Fig. 24, the dominant density eigenvector is
pears in the eigenvector. Fo, /t,4=0, the dominant chan- the Q=0 mixed-orbital state folUyy/t,q=8 and theQ=0
nel is theQ=0 charge transfer; however, whah, /t,4is  charge-transfer state f&dqq/t,q=2.
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FIG. 24. Maximum magnetic and density channel eigenvalues
as a function of bare level separatieit,q for two values of N
Ugq/tpy. Other i Le(k) =1/t
ddltpd- parameters are set at their standard values. Th
particle density and temperature are as in Fig. 19.
3.00 .
D. Hartree-Fock and FLEX band structure
In this section we analyze the effect of interactions on the
one-particle band structure of the Cu@odel. Within the
Hartree-Fock approximation the system may be described by
an effective Hamiltonian 0.00
HP— =2 2 2% [h5(k) — 1 FIcg,(K)Cna(k),
g
(50)
hHF k) =ho. (k) + (1) K). -3.00
ab( ) ab( ) 2ab( ) r X M r
Both the diagonal and the off-diagon@le., hopping ele-
ments of the Hamiltonian are renormalized. The Hartree-
Fock bands are just the eigenvalues of th&33matrix 6.00

hHF(k)_,LLHF.

Within the FLEX approximation the self-energy is no [Re AK)]/toa T~ |
longer instantaneous, and quasiparticle bands can only be
rigorously defined in the vicinity of the Fermi surface. The
FLEX Fermi surface may be determined using the procedure 3.00
outlined by Luttingei® for multiband interacting systems.
(This procedure is valid for any conserving approximation
and, of course, for the exact model solutiolt.is necessary
to solve the X3 matrix eigenvalue problem

0.00
{[h°(k) = uFF]+ 2 (k,@=10")} ¢bi(k) = \i(K) i (K),
(52)
where the self-energy matriX is evaluated on theeal axis ©
at the chemical potentidkw=0), \;(k) is in general acom- ~3.00 ¢
plexeigenvalue, an@, (k) is an eigenvector in orbital space. ’ r X M r

The Fermi surface is the locus of poirksor which

FIG. 25. Dispersion of noninteracting, Hartree-Fock, and FLEX
Ren(k)=0 (528  bands along a triangular contour in the Brillouin zdgee Fig. 13
Results are shown for the standard parameter sebat1.125. The
(t;}emperature for the FLEX calculation ®t,4=0.016. The chemi-
cal potential is indicated by a dashed li@. Noninteracting bands.
(b) Hartree-Fock bandgc) FLEX “bands.” Note the definition of
Im\;(k)=0 (52b  A(K) in the text.

for any of the three eigenvalues. At zero temperature on
should also find
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for points on the Fermi surface; a nonzero imaginary part ighe k-dependent eigenvalues along a set of one-dimensional
expected if the calculation is carried out at finite temperaturetrajectories in the discretized Brillouin zone. The FLEX de-
According to the so-called Luttinger theor&htwhose proof terminations are made d't,4=0.016 for(n)=0.875 and
remains valid for any conserving approximatiptihe volume  1.125, and af/t,4q=0.031 for(n)=1.00. Only slight devia-
(or in two-dimensional systems, the areaside the Fermi tions from the Luttinger theorem are observed, with the larg-
surface depends only on the average particle number per urést discrepancy atn)=1.00. These deviations appear to
cell. In other words, Coulomb interactions may distort thearise entirely from the use of finite temperature FLEX data:
Fermi surface from its noninteracting shape, but they do nothe values of Im\;(k) at the Fermi surface are nonzero and
alter its volume. temperature-dependent even at temperatures as low as 0.016.
In order to study the Luttinger theorem we have per-Furthermore, the difference between the FLEX and Hartree-
formed the analytic continuation of thie-dependent self- Fock volumes consistently decreases with decreasing tem-
energy matrix to the real axis using standard Papleroxi-  perature. Note that in the Hartree-Fock plots occupied hole
mant techniqued: For w~0 the continuation is highly statesor equivalently, empty electron statempear at small
stable. In fact, the error in determining the Fermi surfacek (inside the Fermi surfage Note also that if a uniform

using the simple imaginary-axis approximation phase scheme is adopted to label the underlying orbitals, the
- . center point in Figs. 28)—26(c) becomes thd/ point; if the
2(k,i0")=2(k,i7T) (53)  Fermi surface is then replotted in a Brillouin zone centered

: _ onT, its appearance changes to four disconnected arcs, with
's on the O(der of & fgw percent fd’dtpd—o.016. ot occupied Egle states cent(gred on the zone corners
In the figures which follow we plot the variation of P ’

Rex, (k) within the Brillouin zone, along with the bands for 10 indicate the effect of,, on the band structure, we

the noninteracting systens,’(k)—u°, and the Hartree-Fock havelrepeateld thg_calt_:ulatiofns d_escribed abOVGDF’FQ'
system, s"F— 4P, It is important to note that the FLEX Results are plotted in Fig. 27 fon)=1.125. Two qualitative

eigenvalues determined in this way should not strictly bedlfferences from the full calculation are immediately evident:

interpreted as quasiparticle bands for gendeallo deter- First, the nearly flat middle band in Fig. 25 becomes a com-

mine the bands it is necessary to perform the usual proceduPAEtely dispersionless nonbondipgoband. Second and more

of searching for zeros of the inverse propagator using the fullrnportant, the point at which the Hartree-Fock and FLEX
?ands cross the Fermi energy moves from the zone interior

frequency-dependent self-energy, not just the value aF—>X) to the zone faceX— M), altering the Fermi surface

w=i0". Nevertheless the plots of Rgk) below furnish at . . ;
least an approximate global picture of the FLEX band struc—tOpc’Iogy' For our orbltal_phase scherigg. 14, the Fermi
surface becomes four disconnected arcs centered oMthe

ture, and for brevity we shall refer to them as the “FLEX points (still with occupied hole states at sma). Con-

bands.” ' . .
In Fig. 25 we plot the noninteracting, Hartree-Fock andversely, for the uniform phase scheme, it becomes a continu-
! ! ! ous curve centered oh, with occupied hole states outside.

FLEX bands along a triangular Brillouin zone contdsee ) o ) ) X
Fig. 13 for the standard parameter set with) = 1.125(hole This qualltatlye difference in behawor from the standard pa-
rameter set illustrates the crucial role playedtQy in ob-

doping and a 1616 discretization. In all cases energies are, . . . o .
measured from the appropriate chemical potential. Note th ining a valid description of the high-temperature supercon-
uctors.

the Brillouin zone labeling is for the choice of checkerboard
orbital phases in Fig. 14. For this choice, the hole band mini- )
mum occurs at thd™ point. (In contrast, for the uniform E. Orbital occupancy factors

phase scheme, the hole band minimum occurs atMhe In this section we discuss the behavior of the orbital oc-

point,) cupancy factors
The band which crosses the Fermi surface has strongly

mixed d and p character. For example, for the point at

k=(77/8,m8), nab(k)=§ (Chy(K)Cag(k))=2G,p(k,7=07). (56)
[(d ¢")|?=0.578, These quantities are just equal-time one-particle propagators.
HE 12 To eliminate numerical cutoff effects, they may be computed
[(py| #™7)|°=0.040, G4 as
Kpyl¢"F)[P=0.382, _
and nab(k)=5ab+ ZT‘w =, Gab(k,lw)
d| ¢F-=)[?=0.610, .
el ¢! # 0 - 0527 3 Glfitkio)|, (57

[(pxl 67-5%)[?=0.037, (55)
where the Hartree-Fock corrections are evaluated using the

Kpy| #7-E%)2=0.353. FLEX chemical potential and®.
The diagonal occupancy factorsyy(k), n,(k), and
Hartree-Fock and FLEX Fermi surfacéBig. 26 have n,,(k) are plotted for the standard parameter set With
been determined fofn) =0.875 (electron-dopeyd 1.00(un-  =1.125 (hole doping and T/t,4=0.016 in Fig. 28.(Note
doped, and 1.125hole-doped using linear interpolation of that the occupancy factors count the average number of
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-1.00 —0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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FIG. 26. Comparison of Hartree-Fock and FLEX Fermi surfaces for a range of particle densities. The FLEX results are calculated at
T/t,4q=0.016 for(a) and (c), and atT/t,4=0.031 for(b). A dashed line indicates the Hartree-Fock surface, and a solid line the FLEX
surface.(a) (n)=0.875(electron dopiny (b) (n)=1.00 (undoped. (c) (ny=1.125(hole doping.

holes, not electrons.Results from Hartree-Fock and full temperature limit; however, if Fermi liquid behavior is at-
FLEX calculations are shown. Points at whikltrosses the tained, the relevant temperature scale must be much less than
Fermi surface are indicated by arrows. Note thatk@long  T/t,4q=0.016. In any case, it is likely that a superconducting
the zone edge, i.ek=(,k,), the FLEX occupancy factor transition preempts the attainment of this limit, at least
n,(k) drops nearly to zero. This is because the Fermi surwithin FLEX.

face band has np, hybridization for these values & Note It is of interest to compare the results in Fig. 28 with
also that, as mentioned previously, states at the Fermi surfacesults for a simplified CuPmodel withU,,=U ,4=0, and
have strong admixtures of both tleandp orbitals. tods tpps € andU g, fixed at their standard values. The sim-

The FLEX occupancy factors do not exhibit sharp discon-plified model resultdFig. 29 are, as expected, extremely
tinuities at the Fermi surface for the range of temperaturesimilar. Gross details of the Fermi surface and the degree of
studied here. Discontinuities proportional to the wave-hybridization are largely determined by the form of the one-
function renormalization constarf, are expected within particle Hamiltonian. The most obvious difference brought
Fermi liquid theory fofT— 0. While Fermi liquid behavioris about by turning onU,, and U4 is a slight decrease in
evident in the Hartree-Fock results, the FLEX results exhibit,,(k) and n,,(k) due to an increased energy penalty for
only a Fermi surface crossover region, whose width is coneccupancy of the orbitals. The total FLEX occupancy per
trolled by strong residual scattering for temperatures as lownit cell for either thep, or p, orbital drops from 0.22 to
asT/t,q=0.016. The present study does not allow a predic0.19 whenU,, and U4 are increased from zero to their
tion of normal state behavior in the asymptotic zero-standard values.
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FIG. 27. Dispersion of noninteracting, Hartree-Fock, and FLEX
bands fort,,=0 and other parameters at their standard values. The
density is(n)=1.125(hole doping. (a) Noninteracting bandgb)
Hartree-Fock bandgc) FLEX “bands.” We attach no particular
significance to the closing of the FLEX band gap at Mepoint:
Recall that the eigenvalues Rék) are calculated with thev=0
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(a)

(b)

(c)

r X

self-energy matrixsee text

M

1.20

nk) | A |  -=- Nyy
1.00 b

0.80 | .
0.60 . -7 =
0.40 [ \ i 1
020 \ ' 1

0.00

1.00

n(k)

0.60

040 |\

0.20 r

0.00 T‘————‘—- : T

FIG. 28. Variation of the diagonal elements of the orbital-
projected occupancy factoi(k) along the triangular Brillouin zone
contour. The points at whick crosses the Fermi surface are indi-
cated by arrows. Parameters take on their standard values, with
(n)=1.125 (hole doping and T/t,4=0.016.(a) Hartree-Fock re-
sult. (b) FLEX result. Note that the FLEX occupancy factors remain
large outside the Fermi surface, where the Hartree-Fock occupancy
drops to zero.

F. One-particle spectral densities

The orbital-projected one-particle spectral dengity is
just the real-axis discontinuity in the propagator matrix:

1
pan(k, @) == 5= [Gap(k,@+107) = Gap(k,0+i07)].
(58)

It is straightforward to show, using fermion anticommutation
relations, thap,, satisfies the sum rule

| do pastk=sa 59

The diagonal elements of the spectral density are positive
definite and have a simple physical interpretation. The spec-
tral weight for removing a particle from the system with
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1.20 tinuation. Several techniques are available for this purpose,
—— including the maximum-entropy data reconstruction
L Ny technique’®®® which has become standard in quantum
1.00 r ) Monte Carlo studies. In this paper we use instead the Pade
[\ or rational function, approximant technigtfePadeapproxi-
0.80 L . mants allow convenient consistency checks on the quality of
-~ imaginary-axis data, since they ot imposea priori con-
7 ‘ straints based on positivity and sum rules. Checks on the
089 N —7 spectral densities includ@) positivity, (i) overall normal-
\ ’r ization[Eq. (59)], and(iii) normalization of occupied states,
0.40 | \ , 1 i.e.,
\ A
\ o
oz | ) . 2| do topak o) e, @2
\ (a) -
0.00 For the results shown below the sum rules in E§S) and
’ r X N 1 r (62) hold true at better than 1%.

We limit our discussion to the standard parameter set.

1.00 Results for the simplifiedy ,,= U ,q=0) parameters set dis-
n(k) cussed in Sec. IV E are quantitatively very similar. Results

are plotted for{n)=1.125 (hole doping and a 1616

0.80 k-space discretization. Note that the required analytic con-
tinuation may be performed on either the self-energy matrix
3 .0k, w) or the propagatoG,,(k,iw). We have found it
more numerically stable to continue the propagator.

A series of temperature-dependent plots of therbital
densitypyq(k,w) are shown in Fig. 3@) for k=(7#/8,7/8), a
point very close to the FLEX Fermi surface. A closeup view
of the low-energy behavior is included as Fig.(l30 The
spectral density within the Hartree-Fock approximation for
T—0 (a set of threes functiong is shown for comparison in
Fig. 30@). The weight of the Hartree-Foc& functions indi-
cates the degree of admixture of theorbital in the three
band states at this value &f Sincek, is close tom, thed
orbital mixes only weakly with thep, orbital, but strongly

FIG. 29. Variation of the diagonal elements of the orbital- with the p, OIbltal' The ony—lntenSIt)éfunctlon at.w/tpd~.3
projected occupancy factork) along the triangular Brillouin zone locates the no,nbondmg _band,Statal,mOSt e”“r?'ypx In
contour. In this cas®,,= U ,4=0, while other parameters are as in parentagg while the hlgf‘l‘er-lnt'ensnlty g f}Jnc'.uons . at”
Fig. 28. As before, arrows indicate the position of the Fermi sur-@/tpa~0 and 5 locate the “bonding” and “antibonding
face.(a) Hartree-Fock resulib) FLEX result. states(strong admixtures ofl and p,, with only a slight

admixture ofp,). The FLEX spectral densities may be de-

wave vector k and energy » in orbital a is just Scribed qualitatively as follows: The Hartree-Foékfunc-

0.60 r

040 F N\ 1V

0.20 r \ \

0.00 x
T

f(w)paa(k,w), with f the Fermi function tions are smeared into resonances of finite width, which shift
slightly and narrow with decreasing temperature. The struc-
f(w)=(eP+1)" L. (60) ture near the Fermi surfa¢€ig. 3ab)] is strongly tempera-

ture dependent, due to the effect of low-energy spin fluctua-

Conversely, the spectral weight for adding a particle to thejons. A prominent quasiparticle peak develops from the
system with the same characteristics is{f(w)] paa(k,®).  Fermi surface band as the temperature is decreased.
Since the diagonal elements are real, E5g) may be sim- Analogous plots fofp,(k,w) and py,(k,») are shown in
plified as Figs. 31 and 32. The features can again be understood as a
modification of the Hartree-Fock results. Note thgt is
dominated by a broad resonancewdt,;~ 3, the remnant of
the Hartree-Fock “nonbonding” state. The presence of a
small admixture of thep, orbital in the Hartree-Fock band

The off-diagonal elements of the spectral density are nostate atw~0 accounts for the Fermi surface peakgdp,.
positive definite and may even be complex. These elementdote that although the integrated weight in this peak is small
describe the process of adding a particle to the system in oria comparison with that ip44, the temperature dependence
orbital and removing it in another. Their calculation is is quite similar[Fig. 31(b)]. The p,, density is a superposi-
straightforward, but in the discussion which follows we re-tion of two strong peaks, which correspond to the “bond-
strict attention to the diagonal elements. ing” and “antibonding” Hartree-Fock band states. The tem-

The functions p,,(k,0) may be obtained from our perature dependence of the Fermi surface peak again mirrors
imaginary-axis propagator data by numerical analytic conthe behavior inpyq.

1
paa(k,w)=—; IMG_,(K,w+i0"). (61
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FIG. 30. Temperature variation of tlieorbital spectral density FIG. 31. Temperature variation of tipg-orbital spectral density
pad(k,w). Parameters take on their standard values, {vith=1.125  py(K,w). Parameters are as in Fig. 30. As before, vertical arrows
(hole doping. The wave vector i&=(77/8, 7/8), a point as close indicate the Hartree-Fock functions. (a) Full-scale variation of
as possible to the Fermi surface for axi% discretization. Vertical — pyx. (b) Fine-scale variation near the Fermi energy.
arrows indicate the positions and relative weights for the thtee
functions contributing tgyq in a T—0 Hartree-Fock calculation. density matrix is simplest. It is straightforward to show that
The FLEX spectral densities are positive-definite and integrate t@r;; (Q,w) is real-valued so that E463) may be simplified as
unity at the 1% level(a) Full-scale variation opyq. (b) Fine-scale
variation near the Fermi energy. 1 -
Uii(Q,w):glmMii(Q,w"‘lO ) (64)

G. Spectral densities for particle-hole fluctuations .
. o Furthermore, it follows that
Even though vertex-corrected dynamic susceptibilities are

not determined in this paper, it is of interest to examine the dij(Q,00=0 (659
spectral densities for the correlated fluctuation propagators d

M andD. In analogy with the one-particle spectral densities,an

we write (59) ;i(Q, @) >0. (65b)

1 Finally, the spectral density satisfies the symmetry relation
0ij(Q,w)= > [Mij(Q0+i0")=M;(Q,0+i07)],
(63) O-II(Q!w):_O-ﬁ(_QI_w)i (66)
for statesi and1 related by particle-hole conjugation. For
whereM is the correlated spin fluctuation propagator, and example, the particle-hole conjugate of statel particle one
andj run over the 11 particle-hole basis states in Table |. Assite to the right ofp, hole) is state 7(p, particle one site to
before, the interpretation of diagonal elements of the spectrahe left ofd hole). It is not true in general that;; is an odd
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0.40 . . . . . 1.50 . . .
(k) 11(Q,0) T/t
KA .
> O S ——tH
0.30 } D
0.50
0.20 } 1 0.00
-0.50
0.10 | .
-1.00
0.00 -1.50 ' . '
—-15.00 —10.00 -5.00 0.00 5.00 10.00 15.00 -0.10 -0.05 0.00 0.05 0.10
w/tpd w/tpd
0.40 . T . - .
T/t FIG. 33. Temperature variation of the spectral weight(Q,w)
(k@) pd for the d-orbital-projected magnetic propagator. The wave vector
PyAKs o '?;g Q=(m,m), and other parameters are as in Fig. 30. Note that this
0.30 ' spectral weight matrix element is odd in frequency.
b(w)0ii(Q,w)=[1+b(~ w)]o7(—Q,~w). (69
0.20 The last equation is just a restatement of the symmetry rela-
tion in Eq. (66).
We have analytically continued the magnetic particle-hole
propagatom;;(Q,iQ)) to the real axis, again using the Pade
0.10 approximant technique. As an example, the magneit
spectral density(oy,) is plotted in Fig. 33 for a series of
decreasing temperatures with the standard parameter set and
0.00 . . . (n)=1.125(hole doping. The lattice discretization is>88,

900 —1.00 0.00 100 2.00 _and the wave_vectcfrg is (Tr,q-r)._ This spectral density is odd
©/tpa in frequency, in agreement with E(67). Note that a strong
low-frequency peak develops as the temperature is reduced.
FIG. 32. Temperature variation of tipg-orbital spectral density This peak indicates an accumulation of low-lying states in
pyy(k,w). Parameters are as in Fig. 30. As before, vertical arrowdhe system Wlth spin 1 and wave Ve?(%ﬁ)- The presence
indicate the Hartree-Fock functions. () Full-scale variation of ~Of such states is implied by the rapid increase in the static
pyy- (b) Fine-scale variation near the Fermi energy. component of the magnetic propagator at low temperature
(see Sec. IV ¢ If an actual magnetic instability occurred,
function of w, as one might expect by analogy with single- the resulting ordered state could be viewed as a condensate
orbital models. It follows, however, from E¢6) and inver-  of particle-hole pairs in these low-energy states.

sion symmetry that To illustrate the behavior of;; (Q,w) for i describing an
. interorbital particle-hole pair, results fors5(Q,w) and
0i(Qw)=—-0;i(Q,~w) if i=1, (67)  o,4(—Q,w) are plotted in Fig. 3@). As before, the wave

vector isQ=(,m). Note that neither function is odd in fre-

i.e., fori=1, 2, or 3 in the Cu@model(see Table)l . . i
The diagonal density elements have the following physi_quency, but that the two functions satisfy the symmetry re

cal interpretation: The spectral weight for removing a spinla“on in Eq.(66). Finally, it is interesting to notgFig. 34b)] .
= B ; that because states 5 and 7 have a small, but nonzero, admix-
fluctuation(i.e., anS=1 particle-hole paijrfrom the system

with wave vectorQ and ener in orbital-oair state . or ture in the unstablds,m) magnetic eigenvectofsee Sec.
: . . Iy P ' IV C), they show the same temperature-dependent low-
adding a spin fluctuation to the system with wave veet@y

and energy— in orbital-pair statd s just b(e) o (Q.w), frequency behawor asy;. Note that, as gxpgcted, the inte-
: : grated spectral weight is much smaller in this case.
with b the Bose function

b(w)=(ef*—1)"1 (69 V. SUMMARY

If one interchanges the processes of removal and addition, Our results may be summarized first with respect to the
the corresponding spectral weight is fb(w)]o;;(Q,w).  CuO, model studied in Sec. 1V, then with respect to general
Clearly the latter process for paramet€s-—Q, w——w, lattice models. Our primary conclusion for the Cu@odel
andi—1is identical with the former, so that necessarily ~ with unit-cell occupancy close to unithole doping or elec-
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0.15 . : . . i by the Fermi surfacdéor curve, in this cageis preserved,
. _ with the shape distorted only slightly.
o Q) T/ta=.016 o The results obtained for spectral densities of the one-
0.10 . . .
particle and particle-hole propagators are influenced by the
~ development of low-frequency, larg@-spin fluctuations. It
0.05 \ ] is interesting to note in passing the similarity of these results
AN to those for the local orbital in an Anderson impurity model.
000 b - BT In both cases the physics is dominated by an incipient mag-
> netic instability, with the resulting development of low-
frequency peaks in the spectral densities. This similarity has
—0.05 | been previously emphasized in studies of the Hubbard model
in the limit of infinite spatial dimensiof*
-0.10 . An obvious next step in the analysis of the Gu@odel is
(a) the study of instabilities in the particle-particle channel. It is
—0.15 . . . . , clear from the form of the correlated particle-hole propaga-
—15.00 —10.00 —5.00 0.00 5.00 10.00 15.00 tors that a Singlet channel Witdxz_yz symmetry will be
w/tpd enhanced, just as in previous studies of the single-orbital

Hubbard modéi®~1°and in apparent agreement with experi-

015 ' ' ' ments on the cuprate high-temperature superconduttérs.
055(Q) direct determination of the superconducting phase diagram
0.10 (with a quantitative estimate of transition temperatures, al-
beit within the limitations of the FLEX approximatipns
0.05 desirable. Such a determination will yield values for the rela-
tive weight of the Cooper pair wave function on copper and
oxygen sites, with near-neighbor Cu-O Coulomb repulsion
0.00 taken into account.
In a more general context, the results obtained here pro-
-0.05 vide an encouraging step in the approximate treatment of
multiband interacting systems. The FLEX approximation
~0.10 provides a rather natural starting point for the analysis of any
system in which particle-hole correlations are appreciable,
i.e., narrow-band systems with large Coulomb integrals. The
—0.15 ' ) ' primary limitation of FLEX is its inherent inconsistency in
-0.10 -0.05 0.00 0.05 0.10 .
©/tpd the treatment of two-body vertex functions. One approach to

address this limitation is the introduction of self-consistently
determined instantaneous pseudopotentiisThe use of

FIG. 34. Comparison of SPeCtral d?ns't'effﬁ(Q’w) and limited particle-hole basis sets indexed by relative separa-
o77—Q,w) for interorbital magnetic fluctuations. Parameters are as

in Fig. 33. Note that in this case the wave vect@s () and tion,. ratherlthan rglative momentum, provides a potentially
—Q=(—m,—m) describe the same point in the Brillouin zoria) cryuql toof* for going beyond pseudopote.ntlals to the deter-
Full-scale variation at temperatur®/t,,=0.016. (b) Fine-scale ~Mination of crossing-symmetric self-consistent vertex func-
variation of o5 as a function of temperature. tions.

Finally, it is important to note that parallel computers pro-
S L . . ... vide a natural route for obtaining the time and storage capa-
tron doping is that the only incipient particle-hole instability bilities necessary to treat much more realistic tight-binding

is in a spin-1(i.e., magnetig channel withQ~(m,m). The = /01 o complex unit-cell structure and longer-range
spin-0, or density, channel is never close to an instability for

realistic values of the Coulomb integrals. Depending on th(_}Coulomb interactions. Parallel FLEX implementations have

values ofUyq, Upp, and U,g, the most unstable density already been obtained for single-orbital models with pure

channel corresponds either to charge-transfer fluctuations goulomt$ and Coulomb- (local phonop™ interactions. The
the type discussed in Refs. 18—20 and 25 or to mixed-orbitd"dePendent computation of large numbers of self-energy
fluctuations mediated by the exchange part of the near@"d particle-hole propagator matrix elements, which is the
neighbor Coulomb interaction. For the standard parametdiMe-consuming step in a multiband FLEX solution, is well-
set of Ref. 24 we find that the mixed-orbital fluctuations areSuited to implementation on a parallel machine, and it is
actually dominant. likely that future analyses will be performed in this way.

The Luttinger theorer has been examined and validated
for a nontrivial three-band model within the limitations im-
posed by an analysis for nonzero, but low, temperature. De-
spite the striking difference between the orbital-projected oc-
cupancy factors(Figs. 28 and 2P calculated within the This work was supported in part by the National Science
Hartree-Fock and FLEX approximations, the area enclosefoundation under Grant No. DMR-9520636.
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