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Fluctuation-exchange theory for general lattice Hamiltonians

Gökhan Esirgen and N. E. Bickers
Department of Physics, University of Southern California, Los Angeles, California 90089

~Received 21 August 1996!

The fluctuation-exchange, or FLEX, approximation for interacting electrons is derived for lattice Hamilto-
nians with general instantaneous one- and two-body terms. The use of a two-body basis set indexed by relative
separation, rather than relative momentum, is emphasized. The fluctuation-exchange approximation for the
three-orbital CuO2 model with on-site and near-neighbor Coulomb interactions is solved for one-particle
properties. Unit-cell densities corresponding to both ‘‘hole doping’’ and ‘‘electron doping’’ are studied. The
model is found to be far from a charge-density instability for all reasonable parameter values. The only nearly
unstable particle-hole channel for unit-cell densities close to unity hasQ;~p,p! andS51 ~antiferromagnetic!.
The Fermi surface of the interacting system is computed, and the Luttinger theorem verified numerically in its
most general context. Orbital-projected occupancy factors and spectral densities are examined.
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I. INTRODUCTION

In recent years, self-consistent-field~SCF! approxi-
mations1 have been used to study tight-binding models
correlated electrons. Previous work has been limited to
simplest electronic orbital and interaction structures~viz., the
one-orbital Hubbard model2–10 and a trivial extension11!. In
this paper we extend the SCF analysis to general tig
binding models and perform calculations of one-particle c
relation functions for the three-orbital model12 most com-
monly used to describe the high-temperature cup
superconductors.

We begin by briefly reprising the motivation behind th
SCF approach. In any SCF approximation the effect of tw
particle interactions is partially eliminated by the introdu
tion of a self-consistently determined one-particle potent
At Hartree-Fock level~see Fig. 1! the one-particle potentia
is instantaneous, and the system may be described in t
of a modified Hamiltonian. In approximations beyon
Hartree-Fock, the potential becomes time-dependent, and
system must be described in terms of an action function

A conceptually appealing approach for systems in wh
particle-hole or particle-particle pair fluctuations are large

FIG. 1. Hartree~direct! and Fock~exchange! SCF diagrams.
Solid lines represent one-particle propagators, and dashed line
two-body interaction.
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the so-called fluctuation-exchange, or FLEX, approx
mation.1,13 This approach takes the view that one-partic
excitations interact through the exchange of pair fluctuatio
~This view can, in principle, be made exact by introducin
appropriate two-particle-irreducible vertex functions.! If cor-
relations between elements of the pair fluctuation are
nored, the simplest ‘‘correlation’’ contributions to the one
particle SCF are generated~see Fig. 2!. Note that the
uncorrelated pair fluctuation propagator is just a convoluti
of two one-particle propagators. The simplest approximati
which correlates the elements of the pair using an irreduci
vertex function ~in contrast with perturbation theory! is
FLEX. In this case the irreducible vertex function is just th
unrenormalized two-particle interaction.

The FLEX approximation provides a simple enlargeme
of Hartree-Fock theory with many of the features familia
from the Migdal-Eliashberg treatment14,15 of electron-
phonon interactions. The quantitative accuracy of the a
proximation may be improved by replacing the unrenorma
ized interaction in the pair fluctuation propagators with
self-consistent vertex function, or pseudopotential.3,16 The
pseudopotential may be determined by solving a set of p
quet equations.

As mentioned above, previous FLEX studies have be
limited to the simplest tight-binding models. In Sec. II below
we derive the most general form of the FLEX approximatio
for Bravais lattices with an orbital basis and an arbitra
instantaneous two-particle interaction. This extension allo

the FIG. 2. Simplest correlation contributions to the one-partic
SCF.
2122 © 1997 The American Physical Society
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55 2123FLUCTUATION-EXCHANGE THEORY FOR GENERAL . . .
the incorporation of increasingly realistic features. Such f
tures must be included if the eventual goal is a predict
capability for real materials. The crucial technical featu
which makes solution of such approximations feasible is
introduction of a new basis set17–21 for pair fluctuation
propagators. In Sec. III we discuss a number of techn
points associated with solution of the FLEX equations
multiorbital systems.

In parallel with development of the general formalism, w
specialize our analysis to the now standard three-orb
model for CuO2 layers in the cuprate superconductors.
Sec. IV we present and discuss results for one-particle
relation functions in this model, using a canonical parame
set derived from density-functional studies and a variety
other parameter choices. We summarize our analysis in
V, and briefly discuss the next phase of this calculatio
program, the analysis of two-particle instabilities in the Cu2
model, and more general systems.

II. TECHNIQUE FOR GENERAL COULOMB
INTERACTIONS

In this section we develop the form of the FLEX approx
mation for a general instantaneous local interaction in
tight-binding model for a Bravais lattice with a basis.~This
development may be extended to time-dependent inte
tions in a natural way.1!

Assume that the Bravais lattice consists ofN unit cells
with periodic boundary conditions, and that each unit c
contains a set of orthonormal orbitalsfa . Assume in addi-
tion that orbitals in different unit cells are also orthogonal.
the one-particle Schro¨dinger operator~electronic kinetic
energy1Coulomb interaction with the lattice! is written
h0~r !, the second-quantized one-particle Hamiltonian ta
the form

Ĥ05(
s

(
ab

(
RaRb

hab
0 ~Ra ,Rb!cas

† ~Ra!cbs~Rb!, ~1!

where

hab
0 ~Ra ,Rb!5E dr fa* ~r2Ra!h

0~r !fb~r2Rb!. ~2!

In these equationsRa is the origin of the unit cell containing
orbital a. Since the system is periodic,h ab

0 ~Ra ,Rb! depends
only on the relative separation

DRab5Ra2Rb . ~3!

It is convenient to Fourier transform using

cas
† ~Ra!5

1

AN (
k
e2 ik•Racas

† ~k!. ~4!

Thus

Ĥ05(
s

(
ab

(
k
hab
0 ~k!cas

† ~k!cbs~k!, ~5!

with
-
e

e
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f
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hab
0 ~k!5 (

DRab
e2 ik•DRabhab

0 ~DRab!. ~6!

This last form is convenient for SCF calculations. Note th
the quantityh ab

0 ~k! may be treated as the (a,b) element of
matrix h0~k!, defined with indices in orbital space. The e
genvalues ofh0 are just the one-particle band energies.

It is next necessary to develop a notation and formali
for the two-particle interactionv~r2r 8!. The second-
quantized interaction may be written in two equivalent form
related by a ‘‘crossing symmetry.’’ The use of these tw
forms simplifies notation for the FLEX SCF and vertex fun
tions. The ‘‘direct’’ interaction connects particle-hole stat
in which the final and initial pairs are created at pointsr and
r 8, respectively~see Fig. 3!:

V̂5 1
2 (

ss8
E drE dr 8v~r2r 8!:cs

†~r !cs~r !cs8
†

~r 8!cs8~r 8!:

5 1
2 (

ss8
(
ab,cd

(
RaRb ,RcRd

Vab,cd
dir ~RaRb ,RcRd!

3:cas
† ~Ra!cbs~Rb!cds8

†
~Rd!ccs8~Rc!: ~7!

with

Vab,cd
dir ~RaRb ,RcRd!5E drE dr 8fa* ~r2Ra!fb~r2Rb!

3v~r2r 8!fd* ~r 82Rd!fc~r 82Rc!.

~8!

In the subscript forVdir, ab is a compound index indicating
particle-hole pair in orbitalsa andb; likewise for subscript
cd. The colons indicate normal-ordering of the opera
product.

By translational invariance the Coulomb integralVdir de-
pends on only three intercell displacements~see Fig. 4!. It is
convenient to adopt a notation which emphasizes this fea
by writing

Vab,cd
dir ~RaRb ,RcRd![Vab,cd

dir ~DRac ;DRab ,DRcd!,
~9a!

where, for example,

FIG. 3. Direct interaction vertexVab,cd
dir (RaRb ,RcRd). The po-

sitions r and r8 are integration variables.
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2124 55GÖKHAN ESIRGEN AND N. E. BICKERS
DRac[Ra2Rc . ~9b!

The first argument ofVdir on the right-hand side is the dis
placement from the particle in the initial state to the parti
in the final state. The second and third arguments are
displacements from the hole to the particle in the final a
initial states, respectively.

The expression in Eq.~8! is more general than the Cou
lomb interaction used in most studies of tight-binding mo
els. It is conventional to restrict attention to terms in whi
DRab and DRcd are both zero. This restriction is sensib
since the orbitalsfa~r2Ra! are assumed to fall off exponen
tially: the productsfa* (r2Ra)fb(r2Rb) are small every-
where unlessRa5Rb . Furthermore, the largest contribution
to Vdir arise from combinations witha5b andc5d. Com-
binations which correspond to particle-hole pairs in differe
orbitals ~aÞb or cÞd! are also allowed, but are general
small by orthogonality arguments. Note that these latter co
binations include the exchange integralsJ which arise in
atomic theory.

As a concrete example, consider the three-orbital Cu2
model with short-range Coulomb integrals mentioned in
Introduction. The orbital labels in this case range overa5d,
px[x, andpy[y. The unit cell is indicated in Fig. 5. The
nonzero Coulomb integrals retained are

Udd5Vdd,dd
dir ~0;0,0!,

Upp5Vxx,xx
dir ~0;0,0!5Vyy,yy

dir ~0;0,0!, ~10!

Upd5Vdd,xx
dir ~0;0,0!5Vdd,xx

dir ~1 x̂;0,0!5Vxx,dd
dir ~0;0,0!

5Vxx,dd
dir ~2 x̂;0,0!5Vdd,yy

dir ~0;0,0!5Vdd,yy
dir ~1 ŷ;0,0!

5Vyy,dd
dir ~0;0,0!5Vyy,dd

dir ~2 ŷ;0,0!.

FIG. 4. Definition of the relative displacement variablesDR.

FIG. 5. Unit cell for the three-orbital CuO2 model. The one-
body transfer integralstpd and tpp are indicated.
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Using a crossing operation to flip the ‘‘b’’ and ‘‘ c’’ legs
in Fig. 3, the general interaction may be rewritten in an ‘‘e
change’’ form~see Fig. 6!:

V̂52 1
2 (

ss8
(
ab,cd

(
RaRb ,RcRd

Vab,cd
exc ~DRac ;DRab ,DRcd!

3:cas
† ~Ra!cbs8~Rb!cds8

†
~Rd!ccs~Rc!: ~11!

with

Vab,cd
exc ~DRac ;DRab ,DRcd!

5E drE dr 8fa* ~r !fc~r1DRac!v~r2r 8!

3fd* ~r 81DRac1DRcd!fb~r 81DRab!.

~12!

Note that this is simply a notational change, not a new int
action. The Coulomb integralsVdir andVexc obey the cross-
ing symmetry relation

Vab,cd
dir ~DRac ;DRab ,DRcd!5Vac,bd

exc ~DRab ;DRac ,DRbd!.

~13!
The minus sign in Eq.~11! arises from the reordering o
fermion destruction operators.~The exchange form of the
general interaction should not be confused with the excha
integrals mentioned above, which appear in bothVdir and
Vexc.!

The FLEX approximation for interactionV̂ can be gener-
ated using the formalism of Ref. 1 in a number of ways. F
maximum efficiency it is essential to label the fluctuati
propagators using total pair momentumQ and frequencyiV
~exploiting translational invariance in space and time!; and
relative displacement coordinatesDR andDt ~exploiting the
short-range, instantaneous character ofV̂!.

We begin by defining Coulomb integrals Fourie
transformed on the displacement variableDRac :

Vab,cd
dir ~Q;DRab ,DRcd!5 (

DRac
e2 iQ•DRac

3Vab,cd
dir ~DRac ;DRab ,DRcd!,

~14!

FIG. 6. Exchange interaction vertexVab,cd
exc (DRac ;

DRab ,DRcd).
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and likewise forVexc. In order to calculateS(k,s) it is use-
ful to have the interactionV̂ written out in terms of Fourier-
transformed fermion operators. Invoking Eq.~4! one obtains

V̂5 1
2 (

ss8
(
ab,cd

(
DRab ,DRcd

1

N (
kk8Q

e2 ik•DRabeik8•DRcd

3Vab,cd
dir ~Q;DRab ,DRcd!

3:cas
† ~k1Q!cbs~k!cds8

†
~k8!ccs8~k81Q!:, ~15!

and an analogous expression in terms ofVexc. While the
sums onDRab andDRcd could be performed at this stag
@compare Eq.~6!#, it is important to retain the phase facto
explicitly.

Expressions for the FLEX SCF may now be written dow
in a computationally tractable form. We employ the notati
of Ref. 1, writing the one-particle SCFS and propagatorG
as matrices in orbital space~see Fig. 7!. The combined
momentum-frequency variable~k,iv! is abbreviatedk. The
propagator and SCF are connected by the relation

G~k,s!5$ iv2@h0~k!2m#2S~k,s!%21, ~16!

with h0 the matrix introduced in Eq.~6!. Note that the propa-
gator defined in this way has units of inverse energy~and
differs by a factor ofT from the definition in Ref. 1!.

The Hartree contribution to the SCF~Fig. 8! takes the
form

FIG. 7. One-particle propagatorGm1m2
(k).

FIG. 8. Hartree contributionSm1m2

(1H) (k) to the one-particle SCF
Sm1m2

~1H ! ~k!5
T

N (
n1n2

(
DRm1m2

,DRn1n2

e2 ik•DRm1m2

32Vm1m2 ,n1n2
dir ~Q50;DRm1m2

,DRn1n2
!

3(
k8

eik8•DRn1n2eiv801
Gn1n2

~k8!. ~17!

For the CuO2 example, the nonzero sums collapse to

Sdd
~1H !~k!5Udd^nd&12Upd~^nx&1^ny&!,

Sxx
~1H !~k!5Upp^nx&12Upd^nd&, ~18!

Syy
~1H !~k!5Upp^ny&12Upd^nd&,

with

^nd&5
2T

N (
k
eiv0

1
Gdd~k! ~19!

and likewise for the other mean orbital occupancies.
The Fock contribution to the SCF~Fig. 9! is

Sm1m2

~1F ! ~k!52
T

N (
n1n2

(
DRm1m2

,DRn1n2

e2 ik•DRm1m2

3Vm1m2 ,n1n2
exc ~Q50;DRm1m2

,DRn1n2
!

3(
k8

eik8•DRn1n2eiv801
Gn1n2

~k8!. ~20!

For the CuO2 example,

Sdd
~1F !~k!52 1

2Udd^nd&,

Sxx
~1F !~k!52 1

2Upp^nx&,
~21!

Sdx
~1F !~k!52Upd

T

N (
k8

@11ei ~kx82kx!#eiv801
Gdx~k8!,

Sxd
~1F !~k!52Upd

T

N (
k8

@11e2 i ~kx82kx!#eiv801
Gxd~k8!.

Expressions forS yy
(1F), S dy

(1F), andS yd
(1F) follow by letting

x→y in these equations.
Note that the Hartree and Fock terms may be neatly co

bined as

FIG. 9. Fock contributionSm1m2

(1F) (k) to the one-particle SCF.
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Sm1m2

~1! ~k!5
T

N (
n1n2

(
DRm1m2

,DRn1n2

e2 ik•DRm1m2

3Vm1m2 ,n1n2
d ~Q50;DRm1m2

,DRn1n2
!

3(
k8

eik8•DRn1n2eiv801
Gn1n2

~k8!, ~22!

where

Vd~Q!52Vdir~Q!2Vexc~Q!. ~23!

The interactionVd is just the coupling between density flu
tuations~i.e.,S50 particle-hole pairs!.

For second-order contributions to the SCF~Fig. 10!, the
corresponding expression is

Sm1m2

~2! ~k!5
T

N (
n1n2

(
DRm1n1

,DRm2n2

3(
Q

e2 i ~k2Q!•~DRm1n1
2DRm2n2

!Gn1n2
~k2Q!

3~Vdx̄Vdir!m1n1 ,m2n2
~Q;DRm1n1

,DRm2n2
!,

~24!

where

x̄ r1s1 ,r2s2
~Q;DRr1s1

,DRr2s2
!52

T

N (
k8

eik8•~DRr1s1
2DRr2s2!

3Gr1r2
~k81Q!Gs2s1

~k8!,

~25!

and the productVdx̄Vdir is defined using the matrix multipli
cation

~AB!ab,cd~Q;DRab ,DRcd![(
i j

(
DRi j

Aab,i j ~Q;DRab ,DRi j !

3Bi j ,cd~Q;DRi j ,DRcd! ~26!

for general matricesA andB. Note that the use of the densit
interactionVd allows grouping the two contributions from
Fig. 10 in a single equation analogous to equation~2.30b! in
Ref. 1.

FIG. 10. Second-order correlation contributionsSm1m2

(2) (k) to the
one-particle SCF. Note that the use of the density vertexVd allows
writing these terms as a single diagram.
The quantity x̄ab,cd(Q;DRab ,DRcd! is the uncorrelated
fluctuation propagator for a particle-hole pair with tot
momentum-frequencyQ; initial and final relative time dis-
placementDt50; and initial and final relative unit-cell dis
placementsDRcd andDRab , respectively~see Fig. 11!:

^Ttcb
†~Rb ,t!ca~Ra ,t!cc

†~Rc,0!cd~Rd,0!&sc
conn

5
T

N (
Q

ei ~Q•DRac2Vt!x̄ab,cd~Q;DRab ,DRcd!, ~27!

where the subscript ‘‘sc’’ denotes evaluation with the SC
action and

^Ô1~t!Ô2&sc
conn5^Ô1~t!Ô2&sc2^Ô1&sĉ Ô2&sc. ~28!

Note that the fluctuation propagator may be treated as a
trix in the combined space of particle-hole orbital indicesab
and relative displacementsDRab .

Finally the remaining particle-hole fluctuation contrib
tion ~see Fig. 12! to the FLEX SCF may be written

Sm1m2

~ph! ~k!5
T

N (
n1n2

(
DRm1n1

,DRm2n2

(
Q

3e2 i ~k2Q!•~DRm1n1
2DRm2n2

!Gn1n2
~k2Q!

3@ 1
2V

d~D2x̄ !Vd

1 3
2V

m~M2x̄ !Vm#m1n1 ,m2n2

3~Q;DRm1n1
,DRm2n2

!, ~29!

FIG. 11. Definition of unit-cell displacements and tot
momentum-frequencyQ for the uncorrelated fluctuation propagat
x̄ab,cd(Q;DRab ,DRcd!.

FIG. 12. Density fluctuation exchange contribution to the on
particle SCF. A similar term appears representing the exchang
magnetic fluctuations. Note that the fluctuation propagator isD2x̄,
rather thanD. The subtraction prevents the double-counting
second-order terms.
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55 2127FLUCTUATION-EXCHANGE THEORY FOR GENERAL . . .
again employing shorthand notation for the matrix multip
cation in Eq.~26!. The matrixVm is the coupling between
magnetic fluctuations, and the matricesD andM are fluctua-
tion propagators for density (S50) and magnetic (S51)
fluctuations:

Vm~Q!52Vexc~Q!, ~30!

and

D~Q!5x̄~Q!@11Vd~Q!x̄~Q!#21,
~31!

M ~Q!5x̄~Q!@11Vm~Q!x̄~Q!#21.

In order to perform calculations for a model with sho
range interactions, it is convenient to enumerate all com
nations of the compound orbital indexab and displacemen
vectorDRab for which matrix elements ofVd~Q! or Vm~Q!
are nonzero. For the CuO2 model there are only 11 suc
combinations, and the particle-hole interactions and fluct
tion propagators may be stored compactly as 11311 matri-
ces. One possible indexing scheme is indicated in Tab
With this choice of basis, the interaction matrices are as
lows:

Vd~Q!115Udd ,

Vd~Q!225Vd~Q!335Upp ,

Vd~Q!125Vd~Q!21* 52Upd~11e2 iQx!, ~32!

Vd~Q!135Vd~Q!31* 52Upd~11e2 iQy!,

Vd~Q! i i52Upd , i54,5,...,11,

and

Vm~Q!1152Udd ,

Vm~Q!225Vm~Q!3352Upp , ~33!

Vm~Q! i i52Upd , i54,5,...,11.

TABLE I. Indexing scheme for the particle-hole basis set in t
CuO2 model. The particle orbital isa, the hole orbital isb, and the
unit-cell displacement from hole to particle isDRab . The direct
interaction vanishes except for states with indices 1–3, while
exchange interaction has nonzero matrix elements for all 11 ind

Index a b DRab

1 d d 0
2 px px 0
3 py py 0
4 d px 0
5 d px 1 x̂
6 px d 0
7 px d 2 x̂
8 d py 0
9 d py 1 ŷ
10 py d 0
11 py d 2 ŷ
i-

a-

I.
l-

Note thatQ is measured in units of the inverse lattice co
stant.

III. SOME DETAILS OF THE SOLUTION ALGORITHM

The FLEX solution of the CuO2 model may be divided
into four computational steps:~i! calculation of the uncorre-
lated fluctuation propagatorsx̄ i j ~Q,iV! as convolutions of
the one-particle propagatorGab ; ~ii ! matrix inversion to find
the correlated fluctuation propagatorsMi j ~Q,iV! and
Di j ~Q,iV!; ~iii ! calculation of the one-particle SCF matr
Sab~k,iv!; and ~iv! matrix inversion to find the one-particl
propagatorGab~k,iv!. Note that the indicesi and j run over
11 values, whilea andb run over only 3.

The most time-consuming steps are the convolutions u
to evaluatex̄ i j andSab . Fast Fourier transforms may be use
for this purpose.4 However, we have found it efficient to
proceed using a combination of methods applied to o
orbital models in our earlier work.5,6,10The frequency-space
renormalization group introduced in Ref. 5 is applicable
the present study with only minor modifications.

Rather than accumulating two scalar functionsDS and
Dx̄ to account for renormalization corrections from regio
of high frequency, it is necessary to generalize to ma
functionsDSab andDx̄ i j . In addition we have modified the
previous algorithm in two ways to gain improved accurac
These modifications are as follows:~i! improved interpola-
tion, and~ii ! special treatment of the first-order self-ener
S~1!. Previously piecewise linear interpolation and extrapo
tion have been used to carryDS andDx̄ from one Matsubara
frequency mesh to a finer mesh for use at reduced temp
ture. In the present work piecewise quadratic interpolat
and extrapolation are found to be superior. Particular car
required in the vicinity of the dividing point between ‘‘high’
and ‘‘low’’ renormalization regions. When interpolatingDS
onto the new ‘‘low’’ region mesh, we have found it prefe
able to use only ‘‘low’’ region data. The only exception
for points which lie between the highest frequency in t
‘‘low’’ region and the lowest frequency in the ‘‘high’’ re-
gion; in this case a single point from the ‘‘high’’ regio
should be used in the interpolation. Similar care must
exercised in the interpolation ofDx̄ to avoid slope disconti-
nuities associated with the multistage fermion cutoffs.

The second modification of previous algorithms conce
the treatment of the first-order self-energy. This quan
generates a temperature-dependent, instantaneous term
self-consistent action functional. To calculate a smo
propagator it is essential that thesamefirst-order self-energy
appear in all frequency components. This means thatS~1!

cannot be ‘‘folded down’’ using a standard frequency-spa
renormalization group.~In single-orbital models the first
order self-energy may be absorbed into the chemical po
tial, leaving only a frequency-dependent self-energy wh
vanishes forv→`. This redefinition of the action is not pos
sible for multiorbital models, in whichS~1! is a matrix.! In
fact, we have found within the CuO2 FLEX solution ~see
Sec. IV! that S~1! varies little with temperature below
T/tpd50.25. ~The variation is smallest near^n&51 and in-
creases aŝn& varies from unity.! In order to take into ac-
count this variation, we have found it convenient~a! to delay
commencing the renormalization group untilT/tpd50.25,

e
s.
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2128 55GÖKHAN ESIRGEN AND N. E. BICKERS
and~b! to calculateS (1)(T) without the aid of the renormal
ization procedure, i.e., by summing the propagator over
frequencies.~This calculation adds little to the overall com
putational overhead.! For the frequency-dependent parts
the self-energy, renormalization proceeds as before, i.e.
gions of frequency space are sequentially eliminated w
decreasing temperature. It is interesting to note that, w
the results we report in Sec. IV are calculated with fix
chemical potential, this modified renormalization-gro
scheme makes it possible to calculate accurately for fi
density as well.

A final note is in order concerning the Fourier transfo
of renormalized quantities, includingG~k,iv!. Before sum-
ming on frequency it is essential to interpolate such qua
ties onto auniformmesh corresponding to the current tem
perature. Otherwise, the resulting Fourier transform
contaminated by ripples arising from the breaks in me
scale.

An additional calculational detail is the use of discre
rotational symmetry to reduce the size of the computat
with respect to spatial variables. For the square CuO2 lattice,
the quantitiesS, G, x̄, andx may be calculated fork andQ
restricted to a triangular wedge in the first Brillouin zo
~see Fig. 13!, then extended to the full zone by symmet
operations. Note that some care is required since the ind
ab and i j must be transformed along with the wave vecto
k andQ. In addition to changes in the orbital labels and t
relative separation of particle-hole pairs, changes in
center-of-mass~CM! unit-cell position may be induced b
symmetry operations. For example, under rotation byp, the
px orbital in the unit cell with originR maps to thepx orbital
in the unit cell with originR2x̂. This translation by one uni
cell with respect to the original basis induces an extra ph
exp~6 ik•x̂! in the symmetry relation for the propagat
G~k!.

One might also be concerned about the possible app
ance of minus signs associated with a change in phas
orbitals after a symmetry operation. Since~i! orbitals always
appear inpairs in the correlation functions of interest and~ii !
the convention for orbital phases has been chosen so tha
orbitals pick up the same sign after application of a symm
try operation, extra minus signs do not appear.

With these points noted, the symmetry relations may
stated as follows: Suppose that a general pointk8 ~Q8! in the

FIG. 13. Irreducible wedge in the square-lattice Brillouin zon
The wave vector is measured in units of the inverse lattice cons
a21.
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Brillouin zone maps to a pointk ~Q! in the irreducible wedge
~Fig. 13! after applying symmetry operations~inversion, ro-
tation, reflection, or a combination of these!. Let a andb ~i
and j ! represent the orbital~orbital pair and relative separa
tion! labels for a correlation function evaluated atk8 ~Q8!,
with sym(a) and sym(b) @sym(i ) and sym(j )# the corre-
sponding labels for the point in the wedge. Let the CM tra
lations corresponding to this symmetry operation bedRa and
dRb ~dRi anddRj !. Then

Gab~k8,iv!5eik•~dRa2dRb!Gsym~a!,sym~b!~k,iv! ~34!

and

x i j ~Q8,iV!5eiQ•~dRi2dRj !xsym~ i !,sym~ j !~Q,iV!. ~35!

Corresponding relations hold for the matricesS and x̄.
As an example, consider a point withQx852Qy andQy8

52Qx , whereQ is in the irreducible wedge. The symmetr
operation which carriesQ8 ontoQ is inversion, followed by
reflection acrossx5y. If i56 and j511 ~see Table I!, then
it may be shown that sym(i )511, sym(j )56, dRi52 ŷ, and
dRj52 x̂. Thus,

x6,11~2Qy ,2Qx ,iV!5ei ~Qx2Qy!x11,6~Qx ,Qy ,iV!.
~36!

For a 16316 k-space discretization, the number of gr
points to be calculated is reduced using symmetry operat
from 256 to 45, a factor of nearly 6. For finer discretization
a renormalization group treatment of thek space~or a fast
Fourier transform algorithm4! would eventually become es
sential.

As a final point we note the criteria employed for decla
ing convergence of the FLEX equations. LetG(n) be the
one-particle propagator at the end of thenth iteration. The
equations are assumed to be converged to self-consist
when, for every matrix element and value ofk, ~i! the abso-
lute erroruG(n11)2G(n)u is less than a tolerance«abs; or ~ii !
the relative erroruG(n11)2G(n)u/uG(n11)u is less than a tol-
erance«rel . We have chosen the values«abs5131026 and
«rel5131024 throughout.

IV. RESULTS AND DISCUSSION

In this section we describe results from FLEX calcu
tions for the three-band CuO2 model used frequently to trea
the high-temperature superconductors.12 This model de-
scribes a two-dimensional square Bravais lattice with one
ion and two O ions per unit cell~see Fig. 5!. A single tight-
binding orbital is retained on each ion in order to descr
the dominant parentage of Fermi surface particles. These
bitals are~a! the 3dx22y2 for Cu ions;~b! the 2px for O ions
on horizontal bonds; and~c! the 2py for O ions on vertical
bonds. In the high-temperature superconductors the three
bitals are nearly filled, and it is conventional to write th
Hamiltonian using creation operatorsc† for holes.~To main-
tain continuity with the general discussion in Sec. II we co
tinue to refer to the states created byc† as ‘‘particles,’’ rather
than as holes or electrons.! The density range of interest i
^n& of order unity, i.e., one hole per unit cell. For^n& less
than unity, the system is said to be ‘‘electron-doped’’; f
^n& greater than unity, ‘‘hole-doped.’’

.
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It is convenient22 to choose the orbital phases in th
checkerboard pattern of Fig. 14, so that corresponding o
als in adjacent horizontal or vertical cells differ in phase
21. With this choice the nearest-neighbor transfer integ
are all equal. In the notation of Eq.~1!,

hxd
0 ~R,R!5hdx

0 ~R,R!5hxd
0 ~R,R1 x̂!

5hdx
0 ~R1 x̂,R![2tpd , ~37!

with tpd a positive number~in the hole Hamiltonian!. A simi-
lar relation holds forh yd

0 and h dy
0 . It is trivial to allow an

O-O transfer integraltpp in addition; note that with the phas
convention in Fig. 14,tpp has the same sign astpd . Thus,

hyx
0 ~R,R!5hyx

0 ~R1 x̂,R!5hyx
0 ~R1 x̂2 ŷ,R!

5hyx
0 ~R2 ŷ,R![2tpp , ~38!

and so forth.
It is important to note how our choice of orbital phas

affects the one-particle band structure. An alternative to
checkerboard pattern is the choice of a uniform phase in
unit cells ~so that the positive lobes of all 2px orbitals point
to the right, for instance!. It is straightforward to show tha

FIG. 14. Choice of phases for the Cu 3dx22y2, O 2px , and O
2py orbitals in the CuO2 model.
he
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the values ofk labeling the same one-particle state within t
checkerboard and uniform phase schemes differ by~p,p!. In
other words, theG point ~Brillouin zone center! within our
calculation corresponds to theM point ~Brillouin zone cor-
ner! within the alternative labeling scheme; a rigid shift
~p,p! along the zone diagonal transforms one band struc
into the other. Note, however, that the total wave vectorQ of
particle-hole and particle-particle pair states isidentical
within the two schemes.

The ‘‘on-site’’ terms inh0 ~which do not depend on the
orbital phases! may be written

hdd
0 ~R,R![«d ,

~39!
hxx
0 ~R,R!5hyy

0 ~R,R![«p5«d1«.

The full one-particle Hamiltonian takes the form

Ĥ02mN5~«d2m!(
R

nd~R!1~«d2m1«!(
R

@nx~R!

1ny~R!#2tpd(
s,R

@cds
† ~R!cxs~R!

1cds
† ~R1 x̂!cxs~R!1cds

† ~R!cys~R!

1cds
† ~R1 ŷ!cys~R!1H.c.#

2tpp(
s,R

@cys
† ~R!cxs~R!1cys

† ~R1 x̂!cxs~R!

1cys
† ~R2 ŷ!cxs~R!1cys

† ~R1 x̂2 ŷ!cxs~R!

1H.c.#. ~40!

It is more convenient to work with the Fourier-transform
Hamiltonian

Ĥ02mN5(
s

(
ab

(
k

@hab
0 ~k!2mdab#cas

† ~k!cbs~k!,

~41!

where
h0~k!5F «d 2tpd~11e2 ikx! 2tpd~11e2 iky!

2tpd~11eikx! «d1« 2tpp~11eikx!~11e2 iky!

2tpd~11eiky! 2tpp~11e2 ikx!~11eiky! «d1«
G , ~42!
nd
rs
l-
ticle

am-
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ans-
with the states labeledd→1, x→2, andy→3.
As discussed in Sec. II, the Coulomb interaction in t

CuO2 model is usually truncated at near-neighbor separat
Three different Coulomb integralsUdd , Upp , andUpd are
retained, as in Eq.~10!.

We begin our discussion of the CuO2 FLEX solution with
brief sections onk-space discretization error~Sec. IV A! and
error from the use of the frequency-space renormaliza
group~Sec. IV B!. We then examine the most unstable cha
nels in the 11311 zero-frequency fluctuation propagators f
magnetic and density fluctuations~Sec. IV C!. We survey
n.

n
-

Hartree-Fock and FLEX results for the one-particle ba
structure in Sec. IV D and plot the orbital occupancy facto
nab~k! in Sec. IV E. Finally we discuss results for the rea
frequency spectral densities corresponding to one-par
excitations~Sec. IV F! and particle-hole fluctuations~Sec.
IV G!.23

Throughout these sections we refer to a ‘‘standard par
eter set’’ based on the constrained-occupancy LDA calcu
tions of Hybertsen, Schlu¨ter, and Christensen24 for La2CuO4.
Energies are measured in units of the nearest-neighbor tr
fer integraltpd , and the 3dx22y2 on-site energyed is set to
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2130 55GÖKHAN ESIRGEN AND N. E. BICKERS
zero. The ‘‘standard parameter set’’ is as follows:

tpd.1.3 eV,

«.3.6 eV52.75tpd ,

tpp.0.65 eV50.5tpd ,
~43!

Udd.10.5 eV58tpd ,

Upp.4 eV53tpd ,

Upd.1.2 eV5tpd .

We examine particle densities corresponding to both ‘‘el
tron doping’’ ~^n& less than 1! and ‘‘hole doping’’ ~^n&
greater than 1!. For comparison with other studies, note t
comment on orbital phases andk-space band structure at th
beginning of this section.

IV. CuO2 FLEX SOLUTION

A. Discretization error

In this paper we predominantly employ 838 and 16316
discretizations of the square Brillouin zone to solve t
FLEX equations. In Fig. 15 results for thet-dependent one
particle propagatorsGdd~k,t! andGxx~k,t! are compared for
calculations on a 434, 838, and 16316 mesh using the
standard parameter set. The wave vectork5~p/2,p/2! is cho-
sen to lie near the Fermi surface for^n&50.875 ~electron
doping!. The temperature isT/tpd50.016.

A similar comparison for the magnetic particle-ho
propagatorM11~Q,t! is shown in Fig. 16. The wave vecto
Q5~p,p!, and other parameters are as in Fig. 15. It is use
to split this propagator into ‘‘dc’’ and time-dependent com
ponents using Eqs.~27! and ~31!:

M11~Q,t![TM11~Q,V50!1DM11~Q,t!. ~44!

The time-dependent component@Fig. 16~a!#, like the one-
particle propagator, is only weakly dependent on the discr
zation scale. The dc component has a much stronger v
tion with the discretization scale at low temperatures@Fig.
16~b!#. This variation is expected~at least within the FLEX
approximation!, since the static magnetic response
Q5~p,p! is divergent forT→0. Note that the scale depen
dence at this single point inQ space is only weakly reflecte
in other components of the one-particle and particle-h
propagators.

For the temperatures studied in this paper (T/tpd>0.016)
the maximum error in working with an 838 rather than a
16316 discretization is of order 0.5% for the one-partic
propagator and 2% for the particle-hole propagator~with the
exception of the divergent dc magnetic component discus
above!. The results in Secs. IV D–IV F are obtained exc
sively for a 16316 discretization.

B. Renormalization-group error

As discussed in Sec. III, the frequency-space renormal
tion group~RG! introduced in Ref. 5 is used to reduce com
putational time and storage requirements. The RG proce
is approximate and introduces errors which must be mo
-
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tored. In Fig. 17 we compare results for the propagat
Gdd~k,t! andGxx~k,t! for an 838 k-space mesh, a simplified
parameter set withUpp5Upd50, ^n&50.875~electron dop-
ing!, T/tpd50.031, andk5~p/2,p/2!. The results were ob-
tained first using a full brute-force solution, then using
five-step renormalization group. Both the full and th
renormalization-group solutions assume a frequency-sp
cutoff atV/tpd5650. The corresponding result for the ma
netic particle-hole propagatorDM11~Q,t! with Q5~p,p! is
plotted in Fig. 18. For the range of temperatures studied
this paper we estimate the maximum error introduced by
frequency-space renormalization group to be of order 1%
one-particle and nonsingular two-particle propagators
5% for the singular magnetic propagator.

C. Eigenvalues of the fluctuation kernel

The FLEX approximation is framed to describe the e
change of particle-hole fluctuations between one-particle

FIG. 15. Effect of lattice discretization on one-particle propag
torsG in the CuO2 model. The standard parameter set@Eq. ~43!# is
employed witĥ n&50.875~electron doping! andT/tpd50.016. Re-
sults are shown for wave vectork5~p/2,p/2!. Arrows indicate the
intercepts att501 andt5b2. ~a! Gdd . ~b! Gxx .
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55 2131FLUCTUATION-EXCHANGE THEORY FOR GENERAL . . .
citations. In the model treated here, particle-hole correlati
are instantaneous, and theS50 andS51 propagators are
11311 matrices in the combined space of orbital labels a
unit-cell separations. It is of interest to determine the flu
tuation ‘‘channel’’ which becomes most unstable as the s
tem temperature decreases. The nature of the FLEX app
mation assures that the correlated propagators do not dev
actual singularities at finite temperature. Nevertheless
most parameter sets a single magnetic or density cha
dominates the low-temperature physics, altering the lifeti
of one-particle excitations and biasing the nature of a po
tial superconducting state. The identity of the dominant fl
tuation channel has been a subject of past debate,18–20,25–29

particularly with regard to the effect of the near-neighb
Coulomb integralUpd . At issue has been the competitio
between a large-Q, S51 channel ~an antiferromagnetic
3dx22y2 spin fluctuation! and aQ50, S50 channel~a uni-
form density fluctuation involving charge transfer fro
3dx22y2 to 2px and 2py orbitals!.

FIG. 16. Effect of lattice discretization on thed-orbital-
projected magnetic particle-hole propagatorM11. Parameters are a
in Fig. 15, and the wave vectorQ5~p,p!. ~a! Time-dependent par
of the propagatorDM11~Q,t!. ~b! Zero-frequency component of th
propagatorTM11~Q,V50!.
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The particle-hole fluctuations may be monitored quant
tively by diagonalizing the 11311 matrices~see Sec. II!
2Vd~Q!x̄(Q) and2Vm~Q!x̄(Q), after iterating the FLEX
equations to self-consistency. The dominant instabilities
ways occur forV50; further, by symmetry, it is only neces
sary to considerQ in an irreducible Brillouin zone wedge
~see Sec. III!. The dominant channel is the eigenvector w
the most positive eigenvalue. Note, as discussed above,
all finite-temperature FLEX eigenvalues are smaller th
unity ~though an eigenvalue may smoothly approach un
with decreasing temperature!.

It is important to note that the eigenvalues determined
this way arenot the same as the instability eigenvalues c
culated in previous studies of superconductivity in Hubba
like models.2,6–10 To calculate conserving susceptibilitie
within FLEX one must first determine the appropriate irr
ducible vertex functions.1 Since FLEX is not consistent a

FIG. 17. Validation of renormalization-group calculations f
the one-particle propagatorG. A simplified parameter set is em
ployed withUpp5Upd50, and other parameters set to their sta
dard values. The lattice discretization is 838, with ^n&50.875
~electron doping! andT/tpd50.031. Results from a full brute-force
calculation are compared with results from a five-stage renorm
ization group. The wave vectork5~p/2,p/2!. ~a! Gdd . ~b! Gxx .
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2132 55GÖKHAN ESIRGEN AND N. E. BICKERS
the two-particle level, these functions differ from the inp
interactions.~For example, in this paper we neglect partic
particle interactions in calculating one-particle SCF’s. Ne
ertheless, the resulting particle-particle susceptibilities
nontrivial and may show a tendency toward superconduc
ity.! Vertex corrections do not appear in the fluctuati
propagators which enter the one-particle SCF calculat
@Note that in FLEX calculations for the one-band Hubba
model, the eigenvalue calculation discussed here is triv
The magnetic and density kernels become 131 matrices with
eigenvalues6Ux̄~Q,V50!.#

In order to describe the physics of the competing ch
nels, it is convenient to speak somewhat loosely of ‘‘partic
hole binding.’’ In fact, no actual binding instability occur
~at least in the FLEX propagators!, only resonant scattering
From Eqs.~32! and ~33! it is clear that the most attractiv
interaction matrix element for the standard parameter se
Vm~Q!11, which scatters anS51 on-sited-d particle-hole
pair into itself. The wave vector for binding is determined
the particle-hole density of states, which enters the calc
tion through the uncorrelated propagator matrixx̄~Q,V50!.
For the square lattice witĥn& close to unity, this suggest
binding in a large-Q, S51 state with dominantd-d parent-
age. The amount of admixture of the other ten particle-h
basis states is determined by the relative size ofUpp and
Upd . @It is interesting to note that forQ5~p,p! the matrixx̄
has a special symmetry which results in the exact vanish
of the px2px and py2py components of the dominant e
genvector.#

In the density matrixVd~Q! the only matrix elements with
an attractive real part occur on the diagonal, scatter
mixed-orbital particle-hole states~such as an intracelld par-
ticle andpx hole! into themselves. For the standard para
eter set these matrix elements are small in comparison
those in theS51 channel, and magnetism is expected
dominate. Nevertheless, the presence of negative diag
matrix elements in theS50 interaction matrix suggests tha
at least one density channel is enhanced, rather than

FIG. 18. Validation of renormalization-group calculations f
the time-dependent part of the magnetic particle-hole propag
DM11. Parameters are as in Fig. 17. The wave vectorQ5~p,p!.
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pressed, by the Coulomb interaction. Naive arguments ba
on the particle-hole density of states~at least fore;0! again
suggest binding at largeQ. In comparison, the density chan
nel in the one-band Hubbard model is always suppresse2,3

The charge-transfer channel, which has been
subject18–20,25–29of several previous studies, is not super
cially evident from the form of the interaction matrix. It de
pends on the presence of the off-diagonal matrix eleme
Vd~Q!12 and Vd~Q!13. These matrix elements vanish
Qx5Qy5p and are maximized forQx5Qy50 at a value of
4Upd . Their presence allows the formation of a bound st
containingd-d andp-p components withoppositesign. The
density-wave order parameter corresponding to this eig
vector has a charge deficit in thed orbitals and a charge
surplus in thep orbitals: such an order parameter reduces
repulsive Coulomb energy contributed by particles on ad
cent sites. The fact that the off-diagonal matrix elements
maximized forQ50 insures that the most unstable charg
transfer channel is uniform, not staggered.~Note that a
bound state also arises due to repulsive off-diagonal ma
elements in treatments ofd-wave superconductivity2,6–10 in
the one-band Hubbard model.!

To determine the dominant fluctuation channel for a w
range of parameters in the CuO2 model, we have performed
a survey starting from the standard parameter set for b
hole doping (̂n&51.125) and electron doping (^n&50.875).
Detailed results are reported here for the hole-doped c
Results for electron doping are qualitatively quite simila
and the conclusions reached below survive intact. The t
peratureT/tpd is fixed at 1/64;0.016, a value sufficiently
low to yield the correct eigenvalue order forT→0. ~The
eigenvalue order in some cases changes at high temp
tures.! The k-space discretization scale is 838. In the plots
below we indicate the maximum eigenvalues of the magn
and density kernels on a logarithmic scale based on the
viation from unity. This scale allows a close examination
the behavior of nearly singular eigenvalues.

In Fig. 19 the variation of the maximum magnetic an
density channel eigenvalues,lm andld , as a function of the
bare level separation« is plotted for three values ofUpd , the
near-neighbor repulsion. Note that forUpd50 there is no
attractive density eigenvalue. ForUpd/tpd51 ~including the
standard parameter set!, the most attractive density chann
is a Q50 mixed-orbital state. As noted above, one mig
have guessed the preferred wave vector would be~p,p!,
based on density-of-states effects alone.~The density eigen-
value’s dependence onQ is in fact very weak in this case.!
Only for Upd/tpd54 is the dominant density channel th
charge-transfer state. The wave vector of this state isQ50,
as expected, for«/tpd>0.5. @For smaller«, the wave vector
shifts away from 0 toward~p/2,p/2!, though the dependenc
onQ is weak.# As an example, forUpd/tpd54 and«/tpd51,
the normalized eigenvectorf has

Q50,

z^1uf& z250.722,
~45!

z^2uf& z25 z^3uf& z250.135,

z^muf& z250.001, m54,...,11.

or
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The ^2uf& and ^3uf& matrix elements are equal and have t
opposite sign from̂1uf&. ~Refer to Table I for identification
of the basis states.! The important point to note is that eve
for Upd/tpd54 ~i.e., Upd/Udd50.5! the charge-transfer ei
genvalue remains significantly smaller than the magnetic
genvalue at low temperatures. Only for largeT/tpd ~Fig. 20!

FIG. 19. Maximum magnetic and density channel eigenval
of the FLEX interaction kernel,lm andld , as a function of bare
level separation«/tpd . Results are shown for three values
Upd/tpd , with other parameters set at their standard values.
particle density iŝn&51.125~hole doping!, and the temperature i
fixed at T/tpd50.016. Solid lines and closed symbols repres
magnetic eigenvalues; dashed lines and open symbols repr
density eigenvalues. The eigenvalue axis is logarithmic in the
viation from unity. See the text for identification of the eigenve
tors.

FIG. 20. Temperature variation of the maximum magnetic a
density channel eigenvalues. The values ofUpd/tpd and «/tpd are
set to 4 and 1, enhancing the Cu-O charge-transfer process. O
parameters are as in Fig. 19. Note that the magnetic channel d
nates up to a temperature of orderT/tpd50.15.
i-

does the eigenvalue ordering change so that the cha
transfer channel dominates; at such high temperatures ne
instability is sufficiently strong to have an important effec

The first observation with regard to the magnetic eige
values in Fig. 19 is that they are always close to unity, do
nating the low-temperature physics. The dominant magn
wave vector isQ5~p,p! for all parameters studied witĥn&
51.125. The eigenvector is in most cases concentrated
the d orbital ~basis state 1!, and the coefficient of this stat
increases as«/tpd is increased.

To understand the effect of«/tpd , it is useful to monitor
the Hartree-Fock level separation

«HF5«1 1
2Upp^nx&2 1

2Udd^nd&12Upd@^nd&2^nx&2^ny&#
~46!

as a function of«; see Fig. 21. For small positive« the
Hartree-Fock level separation is actually negative, indicat
that thep levels lie below thed. For larger« the renormal-
ized level separation becomes positive~the so-called
‘‘charge-transfer regime’’ for the high-temperatu
superconductors12,25!. As « continues to increase the syste
eventually crosses over to a regime completely dominated
the d orbitals which may be described using an effecti
one-band model12 ~the ‘‘Hubbard regime’’!.

As an example, for the standard parameter
~«/tpd52.75 andUpd/tpd51!, the dominant magnetic eigen
vector has

Q5~p,p!,

z^1uf& z250.987,
~47!

z^2uf& z25 z^3uf& z250,

z^muf& z250.002, m54,...,11.

@As remarked previously, forQ5~p,p!, the uncorrelated
propagator matrix becomes block-diagonal, and basis sta
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FIG. 21. Variation of theT→0 Hartree-Fock level separatio
«HF/tpd as a function of the bare level separation«/tpd . Other pa-
rameters are set to their standard values, and^n&51.125.
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2134 55GÖKHAN ESIRGEN AND N. E. BICKERS
decouples from 2 and 3.# As « decreases, the admixture o
states 2 through 11 grows. Furthermore, fore near 0 and
large Upd , the dominant eigenvalue may actually becom
twofold degenerate~because basis states 2 and 3 take o
the role played by 1!. For example, for«/tpd50 and
Upd/tpd54, the magnetic eigenvalue is degenerate, and
eigenvector concentrated on thepy orbital has

Q5~p,p!,

z^1uf& z250,

z^2uf& z250.050,
~48!

z^3uf& z250.590,

z^muf& z250.007, m54,5,6,7,

z^muf& z250.083, m58,9,10,11.

Next we consider the role of the Coulomb repulsion
the px and py orbitals. This matrix element has been n
glected in most previous studies, even though it is expec
to be the second largest interaction in the model. One exp
Upp to suppress the charge-transfer channel, since it
creases the energy penalty paid for moving charge from
d to p orbitals. In Fig. 22 we plotlm andld versus«/tpd for
Upp/tpd50, 3, and 6, with other parameters in the stand
set. The effect on the dominant magnetic channel is slig
The eigenvalue decreases slightly with increasingUpp for
large«, a trend consistent with the suppression of virtuald-p
hopping processes by increased repulsion in thep orbitals.
The character of the eigenvectors is almost unchanged.
the density channels the effect is somewhat more dram
though not evident in the figure. The maximum eigenva
decreases as expected, but the more important variation
pears in the eigenvector. ForUpp/tpd50, the dominant chan
nel is theQ50 charge transfer; however, whenUpp/tpd is

FIG. 22. Maximum magnetic and density channel eigenval
as a function of bare level separation«/tpd for three values of
Upp/tpd . Other parameters are set at their standard values.
particle density and temperature are as in Fig. 19.
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increased to 3~in the standard parameter set! or 6, this chan-
nel is suppressed, and theQ50 mixed-orbitald-p channel
becomes dominant. As an example, for the standard par
eter set the density channel eigenvector has

Q50,
~49!

z^muf& z250.125, m54,...,11,

with negligible admixture from states 1, 2, and 3. In all cas
the dominant density channel is much weaker than the do
nant magnetic channel.

While density-functional studies indicate the presence
a p-p transfer matrix element about half as big as thep-d
matrix element,24 most previous model studies have omitt
this effect. We examine the effect oftpp in Fig. 23; all other
parameters take their standard values. The eigenva
change only slightly whentpp is turned off. The only quali-
tative change in the eigenvectors is the shift of the wa
vector for the dominant mixed-orbital density channel fro
Q50 to Q5~p,p!. As noted previously, the wave-vector d
pendence of this channel is weak, and the shift in the ma
mum does not represent a significant change in the phys

Finally we consider in Fig. 24 the effect of variations
Udd , with other parameters fixed at their standard values.
expected, the large-Q magnetic eigenvalue is suppressed s
nificantly whenUdd/tpd is decreased from 8 to 2, but th
magnetic channel remains dominant. The reduction ofUdd

alters the identity of the dominant density channel in t
same way noted previously for an increase inUpd : for all
values ofe in Fig. 24, the dominant density eigenvector
the Q50 mixed-orbital state forUdd/tpd58 and theQ50
charge-transfer state forUdd/tpd52.

s

he

FIG. 23. Maximum magnetic and density channel eigenval
as a function of bare level separation«/tpd for two values of
tpp/tpd . Other parameters are set at their standard values. The
ticle density and temperature are as in Fig. 19.
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55 2135FLUCTUATION-EXCHANGE THEORY FOR GENERAL . . .
D. Hartree-Fock and FLEX band structure

In this section we analyze the effect of interactions on
one-particle band structure of the CuO2 model. Within the
Hartree-Fock approximation the system may be describe
an effective Hamiltonian

HHF2mHFN5(
s

(
ab

(
k

@hab
HF~k!2mHF#cas

† ~k!cbs~k!,

~50!
hab
HF~k!5hab

0 ~k!1Sab
~1!~k!.

Both the diagonal and the off-diagonal~i.e., hopping! ele-
ments of the Hamiltonian are renormalized. The Hartr
Fock bands are just the eigenvalues of the 333 matrix
hHF~k!2mHF.

Within the FLEX approximation the self-energy is n
longer instantaneous, and quasiparticle bands can onl
rigorously defined in the vicinity of the Fermi surface. Th
FLEX Fermi surface may be determined using the proced
outlined by Luttinger30 for multiband interacting systems
~This procedure is valid for any conserving approximati
and, of course, for the exact model solution.! It is necessary
to solve the 333 matrix eigenvalue problem

$@h0~k!2mFLEX#1S~k,v5 i01!%f i~k!5l i~k!f i~k!,
~51!

where the self-energy matrixS is evaluated on thereal axis
at the chemical potential~v50!, l i~k! is in general acom-
plexeigenvalue, andf i~k! is an eigenvector in orbital space
The Fermi surface is the locus of pointsk for which

Rel i~k!50 ~52a!

for any of the three eigenvalues. At zero temperature
should also find

Iml i~k!50 ~52b!

FIG. 24. Maximum magnetic and density channel eigenval
as a function of bare level separation«/tpd for two values of
Udd/tpd . Other parameters are set at their standard values.
particle density and temperature are as in Fig. 19.
e

by

-

be

re

e

FIG. 25. Dispersion of noninteracting, Hartree-Fock, and FLE
bands along a triangular contour in the Brillouin zone~see Fig. 13!.
Results are shown for the standard parameter set at^n&51.125. The
temperature for the FLEX calculation isT/tpd50.016. The chemi-
cal potential is indicated by a dashed line.~a! Noninteracting bands.
~b! Hartree-Fock bands.~c! FLEX ‘‘bands.’’ Note the definition of
l~k! in the text.
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2136 55GÖKHAN ESIRGEN AND N. E. BICKERS
for points on the Fermi surface; a nonzero imaginary par
expected if the calculation is carried out at finite temperatu
According to the so-called Luttinger theorem30 ~whose proof
remains valid for any conserving approximation!, the volume
~or in two-dimensional systems, the area! inside the Fermi
surface depends only on the average particle number per
cell. In other words, Coulomb interactions may distort t
Fermi surface from its noninteracting shape, but they do
alter its volume.

In order to study the Luttinger theorem we have p
formed the analytic continuation of thek-dependent self-
energy matrix to the real axis using standard Pade´ approxi-
mant techniques.31 For v;0 the continuation is highly
stable. In fact, the error in determining the Fermi surfa
using the simple imaginary-axis approximation

S~k,i01!.S~k,ipT! ~53!

is on the order of a few percent forT/tpd50.016.
In the figures which follow we plot the variation o

Rel i~k! within the Brillouin zone, along with the bands fo
the noninteracting system,« i

0~k!2m0, and the Hartree-Fock
system,« i

HF2mHF. It is important to note that the FLEX
eigenvalues determined in this way should not strictly
interpreted as quasiparticle bands for generalk. To deter-
mine the bands it is necessary to perform the usual proce
of searching for zeros of the inverse propagator using the
frequency-dependent self-energy, not just the value
v5 i01. Nevertheless the plots of Rel i~k! below furnish at
least an approximate global picture of the FLEX band str
ture, and for brevity we shall refer to them as the ‘‘FLE
bands.’’

In Fig. 25 we plot the noninteracting, Hartree-Fock, a
FLEX bands along a triangular Brillouin zone contour~see
Fig. 13! for the standard parameter set with^n&51.125~hole
doping! and a 16316 discretization. In all cases energies a
measured from the appropriate chemical potential. Note
the Brillouin zone labeling is for the choice of checkerboa
orbital phases in Fig. 14. For this choice, the hole band m
mum occurs at theG point. ~In contrast, for the uniform
phase scheme, the hole band minimum occurs at theM
point.!

The band which crosses the Fermi surface has stro
mixed d and p character. For example, for the point
k5~7p/8,p/8!,

z^dufHF& z250.578,

z^pxufHF& z250.040, ~54!

z^pyufHF& z250.382,

and

z^dufFLEX& z250.610,

z^pxufFLEX& z250.037, ~55!

z^pyufFLEX& z250.353.

Hartree-Fock and FLEX Fermi surfaces~Fig. 26! have
been determined for̂n&50.875 ~electron-doped!, 1.00 ~un-
doped!, and 1.125~hole-doped! using linear interpolation of
is
e.
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the k-dependent eigenvalues along a set of one-dimensi
trajectories in the discretized Brillouin zone. The FLEX d
terminations are made atT/tpd50.016 for ^n&50.875 and
1.125, and atT/tpd50.031 for^n&51.00. Only slight devia-
tions from the Luttinger theorem are observed, with the la
est discrepancy at̂n&51.00. These deviations appear
arise entirely from the use of finite temperature FLEX da
the values of Iml i~k! at the Fermi surface are nonzero a
temperature-dependent even at temperatures as low as 0
Furthermore, the difference between the FLEX and Hartr
Fock volumes consistently decreases with decreasing t
perature. Note that in the Hartree-Fock plots occupied h
states~or equivalently, empty electron states! appear at small
k ~inside the Fermi surface!. Note also that if a uniform
phase scheme is adopted to label the underlying orbitals
center point in Figs. 26~a!–26~c! becomes theM point; if the
Fermi surface is then replotted in a Brillouin zone cente
on G, its appearance changes to four disconnected arcs,
occupied hole states centered on the zone corners.

To indicate the effect oftpp on the band structure, we
have repeated the calculations described above fortpp50.
Results are plotted in Fig. 27 for^n&51.125. Two qualitative
differences from the full calculation are immediately evide
First, the nearly flat middle band in Fig. 25 becomes a co
pletely dispersionless nonbondingp band. Second and mor
important, the point at which the Hartree-Fock and FLE
bands cross the Fermi energy moves from the zone inte
(G→X) to the zone face (X→M ), altering the Fermi surface
topology. For our orbital phase scheme~Fig. 14!, the Fermi
surface becomes four disconnected arcs centered on thM
points ~still with occupied hole states at smallk!. Con-
versely, for the uniform phase scheme, it becomes a cont
ous curve centered onG, with occupied hole states outsid
This qualitative difference in behavior from the standard p
rameter set illustrates the crucial role played bytpp in ob-
taining a valid description of the high-temperature superc
ductors.

E. Orbital occupancy factors

In this section we discuss the behavior of the orbital o
cupancy factors

nab~k!5(
s

^cbs
† ~k!cas~k!&52Gab~k,t502!. ~56!

These quantities are just equal-time one-particle propaga
To eliminate numerical cutoff effects, they may be compu
as

nab~k!5dab12T (
uvu,vc

Gab~k,iv!

1FnabHF~k!2dab22T (
uvu,vc

Gab
HF~k,iv!G , ~57!

where the Hartree-Fock corrections are evaluated using
FLEX chemical potential andS~1!.

The diagonal occupancy factorsndd~k!, nxx~k!, and
nyy~k! are plotted for the standard parameter set with^n&
51.125 ~hole doping! and T/tpd50.016 in Fig. 28.~Note
that the occupancy factors count the average numbe



ted at
X
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FIG. 26. Comparison of Hartree-Fock and FLEX Fermi surfaces for a range of particle densities. The FLEX results are calcula
T/tpd50.016 for ~a! and ~c!, and atT/tpd50.031 for ~b!. A dashed line indicates the Hartree-Fock surface, and a solid line the FLE
surface.~a! ^n&50.875~electron doping!. ~b! ^n&51.00 ~undoped!. ~c! ^n&51.125~hole doping!.
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holes, not electrons.! Results from Hartree-Fock and fu
FLEX calculations are shown. Points at whichk crosses the
Fermi surface are indicated by arrows. Note that fork along
the zone edge, i.e.,k5(p,ky), the FLEX occupancy facto
nxx~k! drops nearly to zero. This is because the Fermi s
face band has nopx hybridization for these values ofk. Note
also that, as mentioned previously, states at the Fermi sur
have strong admixtures of both thed andp orbitals.

The FLEX occupancy factors do not exhibit sharp disco
tinuities at the Fermi surface for the range of temperatu
studied here. Discontinuities proportional to the wav
function renormalization constantZk are expected within
Fermi liquid theory forT→0. While Fermi liquid behavior is
evident in the Hartree-Fock results, the FLEX results exh
only a Fermi surface crossover region, whose width is c
trolled by strong residual scattering for temperatures as
asT/tpd50.016. The present study does not allow a pred
tion of normal state behavior in the asymptotic ze
r-

ce

-
s
-

it
-
w
-
-

temperature limit; however, if Fermi liquid behavior is a
tained, the relevant temperature scale must be much less
T/tpd50.016. In any case, it is likely that a superconducti
transition preempts the attainment of this limit, at lea
within FLEX.

It is of interest to compare the results in Fig. 28 wi
results for a simplified CuO2 model withUpp5Upd50, and
tpd , tpp , e, andUdd fixed at their standard values. The sim
plified model results~Fig. 29! are, as expected, extreme
similar. Gross details of the Fermi surface and the degre
hybridization are largely determined by the form of the on
particle Hamiltonian. The most obvious difference broug
about by turning onUpp and Upd is a slight decrease in
nxx~k! and nyy~k! due to an increased energy penalty f
occupancy of thep orbitals. The total FLEX occupancy pe
unit cell for either thepx or py orbital drops from 0.22 to
0.19 whenUpp and Upd are increased from zero to the
standard values.
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2138 55GÖKHAN ESIRGEN AND N. E. BICKERS
FIG. 27. Dispersion of noninteracting, Hartree-Fock, and FLE
bands fortpp50 and other parameters at their standard values. T
density is^n&51.125 ~hole doping!. ~a! Noninteracting bands.~b!
Hartree-Fock bands.~c! FLEX ‘‘bands.’’ We attach no particular
significance to the closing of the FLEX band gap at theM point:
Recall that the eigenvalues Rel i~k! are calculated with thev50
self-energy matrix~see text!.
F. One-particle spectral densities

The orbital-projected one-particle spectral densityrab is
just the real-axis discontinuity in the propagator matrix:

rab~k,v!52
1

2p i
@Gab~k,v1 i01!2Gab~k,v1 i02!#.

~58!

It is straightforward to show, using fermion anticommutati
relations, thatrab satisfies the sum rule

E
2`

`

dv rab~k,v!5dab . ~59!

The diagonal elements of the spectral density are posi
definite and have a simple physical interpretation. The sp
tral weight for removing a particle from the system wi

e

FIG. 28. Variation of the diagonal elements of the orbita
projected occupancy factorn~k! along the triangular Brillouin zone
contour. The points at whichk crosses the Fermi surface are ind
cated by arrows. Parameters take on their standard values,
^n&51.125 ~hole doping! and T/tpd50.016. ~a! Hartree-Fock re-
sult. ~b! FLEX result. Note that the FLEX occupancy factors rema
large outside the Fermi surface, where the Hartree-Fock occup
drops to zero.
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55 2139FLUCTUATION-EXCHANGE THEORY FOR GENERAL . . .
wave vector k and energy v in orbital a is just
f (v)raa~k,v!, with f the Fermi function

f ~v!5~ebv11!21. ~60!

Conversely, the spectral weight for adding a particle to
system with the same characteristics is [12 f (v)]raa~k,v!.
Since the diagonal elements are real, Eq.~58! may be sim-
plified as

raa~k,v!52
1

p
ImGaa~k,v1 i01!. ~61!

The off-diagonal elements of the spectral density are
positive definite and may even be complex. These elem
describe the process of adding a particle to the system in
orbital and removing it in another. Their calculation
straightforward, but in the discussion which follows we r
strict attention to the diagonal elements.

The functions raa~k,v! may be obtained from ou
imaginary-axis propagator data by numerical analytic c

FIG. 29. Variation of the diagonal elements of the orbit
projected occupancy factorn~k! along the triangular Brillouin zone
contour. In this caseUpp5Upd50, while other parameters are as
Fig. 28. As before, arrows indicate the position of the Fermi s
face.~a! Hartree-Fock result.~b! FLEX result.
e

t
ts
ne

-

-

tinuation. Several techniques are available for this purpo
including the maximum-entropy data reconstructi
technique,32,33 which has become standard in quantu
Monte Carlo studies. In this paper we use instead the P´,
or rational function, approximant technique.31 Padéapproxi-
mants allow convenient consistency checks on the quality
imaginary-axis data, since they donot imposea priori con-
straints based on positivity and sum rules. Checks on
spectral densities include~i! positivity, ~ii ! overall normal-
ization @Eq. ~59!#, and~iii ! normalization of occupied states
i.e.,

2E
2`

`

dv f ~v!rab~k,v!5nab~k!. ~62!

For the results shown below the sum rules in Eqs.~59! and
~62! hold true at better than 1%.

We limit our discussion to the standard parameter s
Results for the simplified (Upp5Upd50) parameters set dis
cussed in Sec. IV E are quantitatively very similar. Resu
are plotted for ^n&51.125 ~hole doping! and a 16316
k-space discretization. Note that the required analytic c
tinuation may be performed on either the self-energy ma
Sab~k,iv! or the propagatorGab~k,iv!. We have found it
more numerically stable to continue the propagator.

A series of temperature-dependent plots of thed-orbital
densityrdd~k,v! are shown in Fig. 30~a! for k5~7p/8,p/8!, a
point very close to the FLEX Fermi surface. A closeup vie
of the low-energy behavior is included as Fig. 30~b!. The
spectral density within the Hartree-Fock approximation
T→0 ~a set of threed functions! is shown for comparison in
Fig. 30~a!. The weight of the Hartree-Fockd functions indi-
cates the degree of admixture of thed orbital in the three
band states at this value ofk. Sincekx is close top, the d
orbital mixes only weakly with thepx orbital, but strongly
with thepy orbital. The low-intensityd function atv/tpd;3
locates the ‘‘nonbonding’’ band state~almost entirelypx in
parentage!, while the higher-intensity d functions at
v/tpd;0 and 5 locate the ‘‘bonding’’ and ‘‘antibonding’
states~strong admixtures ofd and py , with only a slight
admixture ofpx!. The FLEX spectral densities may be d
scribed qualitatively as follows: The Hartree-Fockd func-
tions are smeared into resonances of finite width, which s
slightly and narrow with decreasing temperature. The str
ture near the Fermi surface@Fig. 30~b!# is strongly tempera-
ture dependent, due to the effect of low-energy spin fluct
tions. A prominent quasiparticle peak develops from t
Fermi surface band as the temperature is decreased.

Analogous plots forrxx~k,v! andryy~k,v! are shown in
Figs. 31 and 32. The features can again be understood
modification of the Hartree-Fock results. Note thatrxx is
dominated by a broad resonance atv/tpd;3, the remnant of
the Hartree-Fock ‘‘nonbonding’’ state. The presence o
small admixture of thepx orbital in the Hartree-Fock band
state atv;0 accounts for the Fermi surface peak inrxx .
Note that although the integrated weight in this peak is sm
in comparison with that inrdd , the temperature dependenc
is quite similar@Fig. 31~b!#. Theryy density is a superposi
tion of two strong peaks, which correspond to the ‘‘bon
ing’’ and ‘‘antibonding’’ Hartree-Fock band states. The tem
perature dependence of the Fermi surface peak again mi
the behavior inrdd .

-
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2140 55GÖKHAN ESIRGEN AND N. E. BICKERS
G. Spectral densities for particle-hole fluctuations

Even though vertex-corrected dynamic susceptibilities
not determined in this paper, it is of interest to examine
spectral densities for the correlated fluctuation propaga
M andD. In analogy with the one-particle spectral densiti
we write

s i j ~Q,v!5
1

2p i
@Mi j ~Q,v1 i01!2Mi j ~Q,v1 i02!#,

~63!

whereM is the correlated spin fluctuation propagator, ani
and j run over the 11 particle-hole basis states in Table I.
before, the interpretation of diagonal elements of the spec

FIG. 30. Temperature variation of thed-orbital spectral density
rdd~k,v!. Parameters take on their standard values, with^n&51.125
~hole doping!. The wave vector isk5~7p/8, p/8!, a point as close
as possible to the Fermi surface for a 16316 discretization. Vertical
arrows indicate the positions and relative weights for the thred
functions contributing tordd in a T→0 Hartree-Fock calculation
The FLEX spectral densities are positive-definite and integrat
unity at the 1% level.~a! Full-scale variation ofrdd . ~b! Fine-scale
variation near the Fermi energy.
e
e
rs
,

s
al

density matrix is simplest. It is straightforward to show th
s i i ~Q,v! is real-valued so that Eq.~63! may be simplified as

s i i ~Q,v!5
1

p
ImMii ~Q,v1 io1!. ~64!

Furthermore, it follows that

s i j ~Q,0!50 ~65a!

and

~sgnv!s i i ~Q,v!.0. ~65b!

Finally, the spectral density satisfies the symmetry relatio

s i i ~Q,v!52s ıı~2Q,2v!, ~66!

for statesi and ı̄ related by particle-hole conjugation. Fo
example, the particle-hole conjugate of state 5~d particle one
site to the right ofpx hole! is state 7~px particle one site to
the left ofd hole!. It is not true in general thats i i is an odd

to

FIG. 31. Temperature variation of thepx-orbital spectral density
rxx~k,v!. Parameters are as in Fig. 30. As before, vertical arro
indicate the Hartree-Fockd functions. ~a! Full-scale variation of
rxx . ~b! Fine-scale variation near the Fermi energy.
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55 2141FLUCTUATION-EXCHANGE THEORY FOR GENERAL . . .
function ofv, as one might expect by analogy with singl
orbital models. It follows, however, from Eq.~66! and inver-
sion symmetry that

s i i ~Q,v!52s i i ~Q,2v! if i5 ı̄, ~67!

i.e., for i51, 2, or 3 in the CuO2 model ~see Table I!.
The diagonal density elements have the following phy

cal interpretation: The spectral weight for removing a s
fluctuation~i.e., anS51 particle-hole pair! from the system
with wave vectorQ and energyv in orbital-pair statei , or
adding a spin fluctuation to the system with wave vector2Q
and energy2v in orbital-pair stateı̄ is just b(v)s i i ~Q,v!,
with b the Bose function

b~v!5~ebv21!21. ~68!

If one interchanges the processes of removal and addi
the corresponding spectral weight is [11b(v)]s i i ~Q,v!.
Clearly the latter process for parametersQ→2Q, v→2v,
and i→ ı̄ is identical with the former, so that necessarily

FIG. 32. Temperature variation of thepy-orbital spectral density
ryy~k,v!. Parameters are as in Fig. 30. As before, vertical arro
indicate the Hartree-Fockd functions. ~a! Full-scale variation of
ryy . ~b! Fine-scale variation near the Fermi energy.
i-

n,

b~v!s i i ~Q,v!5@11b~2v!#s ıı~2Q,2v!. ~69!

The last equation is just a restatement of the symmetry r
tion in Eq. ~66!.

We have analytically continued the magnetic particle-h
propagatorMii ~Q,iV! to the real axis, again using the Pad´
approximant technique. As an example, the magneticd-d
spectral density~s11! is plotted in Fig. 33 for a series o
decreasing temperatures with the standard parameter se
^n&51.125 ~hole doping!. The lattice discretization is 838,
and the wave vectorQ is ~p,p!. This spectral density is odd
in frequency, in agreement with Eq.~67!. Note that a strong
low-frequency peak develops as the temperature is redu
This peak indicates an accumulation of low-lying states
the system with spin 1 and wave vector~p,p!. The presence
of such states is implied by the rapid increase in the st
component of the magnetic propagator at low tempera
~see Sec. IV C!. If an actual magnetic instability occurred
the resulting ordered state could be viewed as a conden
of particle-hole pairs in these low-energy states.

To illustrate the behavior ofs i i ~Q,v! for i describing an
interorbital particle-hole pair, results fors55~Q,v! and
s77~2Q,v! are plotted in Fig. 34~a!. As before, the wave
vector isQ5~p,p!. Note that neither function is odd in fre
quency, but that the two functions satisfy the symmetry
lation in Eq.~66!. Finally, it is interesting to note@Fig. 34~b!#
that because states 5 and 7 have a small, but nonzero, ad
ture in the unstable~p,p! magnetic eigenvector~see Sec.
IV C!, they show the same temperature-dependent l
frequency behavior ass11. Note that, as expected, the inte
grated spectral weight is much smaller in this case.

V. SUMMARY

Our results may be summarized first with respect to
CuO2 model studied in Sec. IV, then with respect to gene
lattice models. Our primary conclusion for the CuO2 model
with unit-cell occupancy close to unity~hole doping or elec-

s

FIG. 33. Temperature variation of the spectral weights11~Q,v!
for the d-orbital-projected magnetic propagator. The wave vec
Q5~p,p!, and other parameters are as in Fig. 30. Note that
spectral weight matrix element is odd in frequency.
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2142 55GÖKHAN ESIRGEN AND N. E. BICKERS
tron doping! is that the only incipient particle-hole instabilit
is in a spin-1~i.e., magnetic! channel withQ;~p,p!. The
spin-0, or density, channel is never close to an instability
realistic values of the Coulomb integrals. Depending on
values ofUdd , Upp , and Upd , the most unstable densit
channel corresponds either to charge-transfer fluctuation
the type discussed in Refs. 18–20 and 25 or to mixed-orb
fluctuations mediated by the exchange part of the ne
neighbor Coulomb interaction. For the standard param
set of Ref. 24 we find that the mixed-orbital fluctuations a
actually dominant.

The Luttinger theorem30 has been examined and validat
for a nontrivial three-band model within the limitations im
posed by an analysis for nonzero, but low, temperature.
spite the striking difference between the orbital-projected
cupancy factors~Figs. 28 and 29! calculated within the
Hartree-Fock and FLEX approximations, the area enclo

FIG. 34. Comparison of spectral densitiess55~Q,v! and
s77~2Q,v! for interorbital magnetic fluctuations. Parameters are
in Fig. 33. Note that in this case the wave vectorsQ5~p,p! and
2Q5~2p,2p! describe the same point in the Brillouin zone.~a!
Full-scale variation at temperatureT/tpd50.016. ~b! Fine-scale
variation ofs55 as a function of temperature.
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by the Fermi surface~or curve, in this case! is preserved,
with the shape distorted only slightly.

The results obtained for spectral densities of the o
particle and particle-hole propagators are influenced by
development of low-frequency, large-Q spin fluctuations. It
is interesting to note in passing the similarity of these res
to those for the local orbital in an Anderson impurity mod
In both cases the physics is dominated by an incipient m
netic instability, with the resulting development of low
frequency peaks in the spectral densities. This similarity
been previously emphasized in studies of the Hubbard mo
in the limit of infinite spatial dimension.34

An obvious next step in the analysis of the CuO2 model is
the study of instabilities in the particle-particle channel. It
clear from the form of the correlated particle-hole propag
tors that a singlet channel withdx22y2 symmetry will be
enhanced, just as in previous studies of the single-orb
Hubbard model2,6–10and in apparent agreement with expe
ments on the cuprate high-temperature superconductors35 A
direct determination of the superconducting phase diag
~with a quantitative estimate of transition temperatures,
beit within the limitations of the FLEX approximation! is
desirable. Such a determination will yield values for the re
tive weight of the Cooper pair wave function on copper a
oxygen sites, with near-neighbor Cu-O Coulomb repuls
taken into account.

In a more general context, the results obtained here p
vide an encouraging step in the approximate treatmen
multiband interacting systems. The FLEX approximati
provides a rather natural starting point for the analysis of a
system in which particle-hole correlations are appreciab
i.e., narrow-band systems with large Coulomb integrals. T
primary limitation of FLEX is its inherent inconsistency i
the treatment of two-body vertex functions. One approach
address this limitation is the introduction of self-consisten
determined instantaneous pseudopotentials.3,16 The use of
limited particle-hole basis sets indexed by relative sepa
tion, rather than relative momentum, provides a potentia
crucial tool21 for going beyond pseudopotentials to the det
mination of crossing-symmetric self-consistent vertex fun
tions.

Finally, it is important to note that parallel computers pr
vide a natural route for obtaining the time and storage ca
bilities necessary to treat much more realistic tight-bind
models with complex unit-cell structure and longer-ran
Coulomb interactions. Parallel FLEX implementations ha
already been obtained for single-orbital models with pu
Coulomb4 and Coulomb1~local phonon!36 interactions. The
independent computation of large numbers of self-ene
and particle-hole propagator matrix elements, which is
time-consuming step in a multiband FLEX solution, is we
suited to implementation on a parallel machine, and it
likely that future analyses will be performed in this way.
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