
 

PHYS 3622 Modern Laboratory Methods II 

Coaxial Transmission Lines 

Purpose  
Electromagnetic waves are the means by which much of the information that forms a part of 
daily life is transmitted. This information may be in the form of a telephone call, radio and 
television broadcasts, digital signals inside a computer, etc.  In this experiment, you will examine 
the propagation of transient and steady state signals in a transmission line. 

Equipment  
• Pulse generator • Line terminators 
• Sine-wave oscillator o Short-circuit 
• Oscilloscope o 4.7 Ω 
• Transmission line o 47 Ω 
• BNC tees o 470 Ω  

Background  
The Characteristic Impedance of Coaxial Transmission Lines* 
Figure 1 shows a voltage source, V, connected to a load impedance ZL by a coaxial cable. If the 
source is a DC source, a current, I, flows down the center conductor, through the load, and back 
to the source via the outer conductor.  Elementary electromagnetic theory states that there are 
corresponding E and H fields (as shown in the figure) inside the cable, and that there are no 
electromagnetic fields outside of the cable.  For low-frequency AC sources, the description is 
essentially the same as for DC.  However, at higher frequencies, where the wavelength, λ, is 
comparable to the length, l , of the transmission line, it is useful to describe the problem in terms 
of electromagnetic waves traveling on the line.   
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Figure 1.  A coaxial transmission line terminated by a load impedance ZL 
In order to determine the fields in the coaxial transmission line, we would solve Laplace’s 
equation, then, from the solution, determine the vectors E and H.   We would then find that the 
magnitudes of the vectors are related by E=ZoH, where Zo is the characteristic impedance of the 
transmission line.  An alternative approach will be to solve for the electric potential difference 
(voltage) between the conductors and the current in the line directly from an electrical equivalent 
circuit.  This is the approach we will take in this experiment in order to determine the 
characteristic impedance of the line and also to look at reflection in the line at the load.   
Figure 2 shows a cross section of a coaxial transmission line.  The line consists of two 
conductors, having radii shown in the figure, separated by a dielectric insulator.  When 
determining the electrical equivalent circuit of the transmission line we must take into account 
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Coaxial Transmission Lines 

the resistive, capacitive, and inductive impedances of the line.  The resistive impedances consist 
of the resistance of the metallic conductors and the resistance of the insulating material.  The 
outer conductor is typically at a different potential than the inner conductor (the outer conductor 
is typically at “ground” potential) and any voltage on the line is impressed on the inner 
conductor.  As a consequence of this, the line can be thought of as a cylindrical capacitor with 
the conductors separated by the insulating material.  And since, as Figure 1 indicates, there is a 
magnetic field associated with electromagnetic waves traveling on the transmission line, there 
will also be an associated inductance.  It is difficult to lump any impedance into a single term 
since a total for each is dependent on the length of the line.  So the best approach is to write each 
term in per unit length units.  Thus by taking a small section of the line and denoting the 
resistive, inductive, and capacitive properties as per unit length an electrical equivalent circuit 
can be drawn as in Figure 3.  Note that G is the conductance of the material that electrically 
insulates the center conductor from the outer conductor.  The conductance is equal to 1/Ri, where 
Ri is the resistance of the insulating material. 

 
 

 
 
 
 

 

Inner conductor 

b

a

Outer conductor Insulator  

Insulating sheath 

 
Figure 2.  Cross-section of a coaxial transmission line. 
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inner conductor Figure 3.  The equivalent electrical 
circuit of a small section of coaxial 
transmission line.  The impedances 
shown are in per length units, thus R 
has units of Ω/m. 
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With this approach, we look to find the time varying voltage and current (we are looking at the 
AC case) and in order to do this, we seek solutions to the voltage and current waves traveling in 
the transmission line of the form  

tie)z(V)t,z(V ω=  (1) 

tie)z(I)t,z(I ω=     . (2) 

We can start by taking a section of the transmission line that extends from z to z+dz (Figure 3).  
If I(z) is the current at z then the current at z+dz is less than I(z) by the current across the line 
(Though Ri is very large it is still finite and consequently there may be some leakage across the 
conductors).  We can write this difference in current as 
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Coaxial Transmission Lines 

Note that V is the voltage across the line, between the two conductors.  Taking a loop through 
the dashed lines of Figure 3 (Kirchhoff’s Loop Rule), we get 

( ) 0dz)z(ILiR)z(V)dzz(V =ω++−+  (6) 

 
 or,  )z(I)LiR(

dz
)z(dV

ω+−=      . (7) 
 

From Equations 5 and 7 we see that V and I are related so we can solve for one and determine 
the other easily enough.  Differentiating Equation 7 with respect to z and inserting Equation 5 
yields 

)z(V
z

)z(V 2
2

2
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∂
∂    . (8) 

where   ( ) ( )[ ] 2
1

LiRCiG ω+ω+=γ    (9) 
The second order differential equation of Equation 8 has the general solution 

z
2

z
1 eVeV)z(V γγ− +=   . (10) 

This solution can then be used to determine I(z).  Thus, differentiating Equation 10 and using 
Equation 7 to solve for I(z) yields  
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The term in front of the brackets of Equation 11 is the reciprocal of an impedance term (recall 
Ohm’s Law), where the impedance is the impedance at any point on the transmission line.  
Whereas R, L, G, and C have units of per unit length, this impedance term, usually called the 
characteristic impedance of the line, has units of ohms.  So let  

2
1

o CiG
LiRZ 







ω+
ω+

=   . (12) 

In general, γ (Equation 9) is a complex number, that is, it is comprised of both an imaginary term 
and a real term, so let  

β+α=γ i   . (13) 

Specifically, α and β are (recall that R, G, L, and C are per unit length), 
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( ) ( ) ( )[ ]{ }2
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2
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ω+ω++ω+−=β    . (15) 

With the general solutions given by Equations 1 and 2, and with Equations 10 and 11, the 
complete general solutions for waves traveling on the transmission line represented by Figure 1 
are 
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The first terms in V(z,t), Equation 16, and I(z,t), Equation 17, represent waves traveling to the 
right with speed β and wavelength ω=v β

π=λ 2  that are damped by the factor .  The second 
terms in V(z,t) and I(z,t) represent waves traveling to the left with the same speed and 
wavelength as the right-going waves, but damped by the factor e .  For waves traveling along 
the transmission line, the speed is frequency dependent and thus is an example of a dispersive 
medium.  Hence, a wave pulse comprised of a number of different frequencies will tend to 
spread out spatially, with the lower frequency waves following the higher frequency waves. 

ze α−

zα

For the case of high frequencies (for coaxial transmission lines, a high frequency means all 
frequencies above, say, 100 kHz) and low losses, the variables α and β can be approximated in 
order to simply them and to get an idea of the magnitude of each.  The high frequency and low 
loss approximations are  

1
R
L
>>

ω  (18) 

and 

1
G
C
>>

ω    . (19) 

Equation 18 represents the low loss due to waves traveling down the line, in that R, the 
resistance of the inner conductor is small since it usually metallic.  Equation 19 represents a low 
loss condition due to the very high resistance Ri (G ≈ 0) of the insulating material that separates 
the inner and outer conductors.  With these approximations then the following is true, 

.LCand
L
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LZo ω≈β≈α≈

2
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Note that  1
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R
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ω

≈
β
α  , (21) 

 
which satisfies the imposed condition represented by Equation 18 and states that α<<β.  Recall 
that α is the real term of γ and determines the damping of the waves.  In the high frequency 
regime, α is directly proportional to R, and since R, the resistance of the metallic conductor, is 
very small, we are free to set α equal to zero.  It should also be noted that in the high frequency 
approximation, Zo is a real quantity and that the speed of the waves is given by  

LC
v 1
=   . (22) 

In the high frequency limit, Equation 22 implies that the wave speed is independent of 
frequency, that is, no dispersion, and is the same as if the line had no resistance.   
For a coaxial transmission line, the capacitance per unit length and the inductance per unit length 
are given by, 
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where ε and µ are the permittivity and permeability, respectively, of the material insulating the 
inner conductor from the outer conductor of the coaxial transmission line.  The values “b” and 
“a” are the radii of the outer and inner conductors, respectively, of the coaxial transmission line 
and l  is the length of the transmission line.  The permeability µ is typically that of the 
permeability of free space µo and has the value m4 .  The permittivity ε differs from 
that of the free space value, ε

H710−×π
o, but can be written kεo, where k is the dielectric constant of the 

insulating material and m
F121085.8 −×=oε .  Thus Zo (Equation 20) and the wave speed 

(Equation 22) can be written as,  
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where c is the speed of light in vacuum.  In the high frequency limit, the characteristic 
impedance of the coaxial transmission line Zo is determined by both the geometry of the 
conductor and the dielectric constant of the insulating material and the speed of the waves is 
determined by the dielectric constant.  Consequently, a direct measurement of the speed that 
waves travel on the transmission line will determine the dielectric constant and by a direct 
measurement of “a” and “b” the characteristic impedance of the transmission line can be found. 
 
Reflection In Transmission Lines Terminated By A Real Impedance 
The solutions given by Equations 16 and 17 are for waves traveling on a line of infinite length.  
Now we will deal with the situation where the line is terminated by some load impedance ZL (cf 
Figure 1) for the cases  and oL ZZ = oL ZZ ≠ . 
For the case where the line is of finite length then the load ZL on the line determines the 
magnitude of the unknown coefficients V1 and V2.  In general, ZL can be real (a resistor) or 
expressed as complex (an inductor, capacitor or any combination thereof that includes a resistor) 
and though much of the analysis to come is true for complex ZL, we will consider only the case 
ZL real.   
In the approximation of high frequencies (α=0) V(z,t) and I(z,t) are   
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A wave just leaving the source will have its voltage and current characteristics of the form given 
by the first term on the right side of Equations 26 and 27.  At all times as this initial wave is 
traveling to the right, with reference to direction given by Figure 1, before it reaches the load, 
V1/I1=Zo.  That is Ohm’s Law is satisfied.  When these initial waves reach the load two things 
can happen:  

1) If oL then the ratio VZZ = 1/I1=Zo=ZL, and the wave travels through the load without 
attenuation; Ohm’s Law is satisfied for this load impedance.   
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2) If oL  then the ratio VZZ ≠ 1/I1≠ZL, that is, the ratio does not have the correct value to 
satisfy Ohm’s Law for the load impedance.  In order to satisfy Ohm’s Law at the load 
there must be an instantaneous change in the value of V1 and I1 at the load.  Thus, part of 
the waves travel through the load and the instantaneous change or discontinuity in the 
values of V2 and I2 then propagates to the left, toward the source.  The wave that travels 
to the left can then be reflected at the source and travel back to the load where it can then 
be reflected once again.  When oL ZZ ≠  an infinite number of reflections can occur at 
the load and after a short time a steady-state condition is approached in which the 
amplitudes of the voltage and current waves approach the values required by Ohm’s Law 
at the load.  In all, steady state standing waves form on the line by the waves produced by 
the AC source and the waves reflected at the load.  Note that the final, steady state, V1 
and I1 values of the right going waves will differ from the initial values of V1 and I1 of 
the initial waves.  That is to say that if the initial voltage wave had an amplitude of 10 V 
then the final voltage wave will have a different amplitude due to the reflections that 
have traversed the length of the line and returned to the load. 

Keeping the general term γ for now, we can simplify further analysis by considering only the 
spatial part of V(z,t) and I(z,t), x 
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to Figure 4 for the variables z and x (to be used 
later). ZLV
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Figure 4. 
We can define a reflection coefficient LΓ  that is 
the ratio of the steady state reflected wave to the 
steady state incident wave.  Thus, 
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In terms of ΓL, ZL becomes 

L

L
oL 1

1
ZZ

Γ−
Γ+

=  (32) 

Solving this for ΓL, 
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oL
L ZZ

ZZ
+
−

=Γ   (33) 

Though we have stated that we are dealing with real values of ZL, that is purely resistive loads, 
this expression (Equation 33) is a general expression for all load impedances.   
ΓL depends on the difference between the load impedance and the impedance of the line.  ΓL can 
be positive or negative, and have a magnitude that ranges from zero to one.  We can consider 
several cases that will encompass all the physics: 
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1) When ZL = Zo then ΓL = 0.  In this case all the power from the source is delivered to the 
load.  There is no reflected wave.   

2) When L , the line is not terminated (it is an open circuit) and Γ∞=Z L=1.  All incident 
waves are reflected at the end of the line.  The reflected wave has the same amplitude as 
the incident wave ( 1L =Γ )  and there is no change in phase upon reflection ( LΓ  is 
positive). 

3) When L  the end of the line is short-circuited and L0=Z 1−=Γ .  The reflected wave has 
the same amplitude as the incident wave ( )1L =Γ  and there is a 180° phase change 
upon reflection (Γ  is negative). L

4) When Lo hen 0 L∞<< ZZ  t 1<Γ< .  The amplitude of the reflected wave is a smaller 
than the amplitude of the incident wave ( )1L <Γ  and there is no change in phase upon 
reflection (Γ  is positive). L

5) When oL  then LZZ0 << 01 <Γ<− .  The amplitude of the reflected wave is a smaller 
than the amplitude of the incident wave ( )1L <Γ  and there is a 180° phase change upon 
reflection (Γ  is negative). L

We are primarily concerned with what happens at the load and write our expressions for the 
steady state voltage and current waves accordingly.  So switching from variable z to variable x 
as depicted in Figure 4, we get, with β=γ i  (that is α=0) and Equation 33, 
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and similarly, ( )xcosZixsinZ
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V(x) and I(x) are complex expressions and it can be seen that there is a phase difference that 
depends on ZL.  Since it is the magnitude of the voltage that can be measured with a voltmeter 
(you can’t measure phase with a voltmeter) we will concern ourselves with only the magnitudes 
of the steady state waves.  Actually we are only interested in the steady state voltage but the 
current will be included for now.  Thus, 

( ) ( )

( ) ( )2o
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o
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ZZ
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=
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 (36) 

Recalling that we are dealing with cases where ZL is real.  Figure 5 shows the magnitudes of the 
voltage and current steady state waves with different load impedances.  These are plotted as a 
function of x, the distance from the load.  Except in the case ZL=Zo, there are minima and 
maxima in both V and I and also maxima of I occur where the minima of V are found, and vice 
versa.   
For the cases L and L  (when ∞=Z 0Z = ∞=L , LZ 1+=Γ  and when L , L0=Z 1−=Γ ), the 
magnitude of the reflection coefficient is 1 and as a consequence, the maximum possible 
amplitude of the steady state voltage for these two cases will be 2V1.  If you compare the sign of 
the reflection coefficient for each case you should be able to distinguish why, at x = 0, one case 
is at its minimum value and the other is at its maximum value. 
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As the load impedance approaches the impedance of the line, the amplitude of the steady state 
voltage approaches V1.  When oL ZZ =  the steady state amplitude is V1, since the reflection 
coefficient is 0. 
 Current Voltage

d)  ZL = Zo/2 

c)  ZL = Zo 

b)  ZL = 2Zo 

a)  ZL = ∞ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 e)  ZL = 0 
 
 
 
 

Figure 4.  The magnitudes of the steady state voltage and current when 
various load impedances terminate the line.   

 
 

The Voltage Standing Wave Ratio 
We can develop our analysis further by determining the voltage standing wave ratio (VSWR).  
Expressed in terms of the maximum and minimum amplitude,  

min

max

V
V

VSWR ≡   . (37) 
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When oL  there are no maxima or minima in the steady state voltage and VSWR=1.  Since 
the steady state standing waves are produced by reflection, when 

ZZ =
oL ZZ =  the reflection 

coefficient is zero.  Thus there is no reflection at the load.   
When oL  there is reflection at the load and standing waves are produced in the line as 
depicted by Figure 4.  Referring to Figure 4, when , a minima always occurs at βx = π/2 
and maxima at βx = 0.  Consequently,  

ZZ ≠
oL ZZ >

 oL
o

L
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Z
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>==
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When , a mimima always occurs at βx = 0 and maximum at βx = π/2.  Consequently, oL ZZ <

 oL
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ZZwhen

Z
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=β

π=β
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In the cases represented by Equations 38 and 39, VSWR is greater than one.  If we know Zo 
(there are a limited number of commercially available coaxial transmission lines) and can 
determine whether oL  or oLZZ > ZZ <  (recall we are dealing with ZL real), then by measuring 
VSWR the load impedance can be found.   
Given Equations 32 and 33, then for  and oL ZZ > oL ZZ < , VSWR can be written 

 
L

L

1
1

Γ−

Γ+
=VSWR    . (40) 

Solving for the magnitude of the reflection coefficient, 

 
1VSWR
1VSWR

L +
−

=Γ    . (41) 

Consequently, a measurement of VSWR will not only yield ZL if Zo is known, it will also yield a 
value for the magnitude of the reflection coefficient.   
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Procedure  
Transient waves: In this part of the experiment, you will observe the propagation of short 
impulses along a transmission line.  

• Using the BNC tee, connect the pulse generator and channel 1 of the oscilloscope to the 
L end of the transmission line. The 0 end of the line should be left open-circuit.  

• Observe the transmitted pulse along with any reflections on the oscilloscope. Print the 
waveform using the print function of your oscilloscope.  

• Measure the time delay between the original pulse and the first reflection, and record this 
time.  Make sure that the pulse width is smaller than the delay time (using the smallest 
pulse width on the generator).  

• Attach the short-circuit termination to the 0 end of the transmission line, and repeat the 
above procedure.   

• Repeat the measurements using the 4.7 Ω, 47 Ω, and 470 Ω terminators. 
Standing waves: In this part of the experiment, you will observe the standing wave patterns 
produced by interference between transmitted and reflected sine waves.  

• Remove the pulse generator and replace it with the sine-wave oscillator. Attach channel 2 
of the oscilloscope to the L/2 point on the line.  

• With no load resistance attached to the 0 end of the line, vary the sine wave frequency 
and locate the lowest frequency null at the L/2 point. Record this frequency.  

• Increase the frequency and locate at least two more nulls at higher frequencies. 
• Return to the first null frequency and measure the voltages (using the oscilloscope) at all 

five tap-points on the transmission line. 
• Attach the short-circuit termination to the 0 end of the line and repeat the voltage 

measurements at the five tap points.   
• Attach each of the other terminations 4.7 Ω, 47 Ω, and 470 Ω in turn, and repeat the 

voltage measurements at the five tap points. 

Questions To Be Incorporated Into The Lab Report  
Transient Waves: The transmission line is 81.5 m long.  How long does it take an impulse to 
travel two lengths of the line? What is the propagation velocity of an electromagnetic wave in 
the line? What is the propagation factor ([propagation velocity]/[speed of light in a vacuum])? 
Transient Waves: Measure the “a” and “b” diameters of the RG-58/U cable used in the 
transmission line (assume that b is equal to the outside diameter of the inner insulation). The 
impedance of RG-58/U cable is 53.5 Ω .  What is the dielectric constant of the insulation? 
Transient Waves: According to electromagnetic theory, the square root of the dielectric constant 
should be equal to the inverse of the propagation factor. How close is it? 
Transient Waves: Discuss and explain the impulse waveforms you observed as you changed the 
termination resistance.  Why does the waveform change its sign when R<Zo?    
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Standing waves: In the standing wave portion of the experiment, what are the wavelengths of the 
waves at the three null frequencies? 
Standing waves: Sketch the probable current and voltage waveforms for each value of 
termination resistance. Calculate the VSWR for each case. 
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	where \( and \( are the permittivity and perme�
	(24)
	and  �                 (25)
	where c is the speed of light in vacuum.  In the high frequency limit, the characteristic impedance of the coaxial transmission line Zo is determined by both the geometry of the conductor and the dielectric constant of the insulating material and the spe
	
	
	
	Reflection In Transmission Lines Terminated By A Real Impedance




	The solutions given by Equations 16 and 17 are for waves traveling on a line of infinite length.  Now we will deal with the situation where the line is terminated by some load impedance ZL (cf Figure 1) for the cases � and �.
	For the case where the line is of finite length then the load ZL on the line determines the magnitude of the unknown coefficients V1 and V2.  In general, ZL can be real (a resistor) or expressed as complex (an inductor, capacitor or any combination th
	In the approximation of high frequencies ((=0) V(z,t) and I(z,t) are
	(26)
	and �   .(27)
	A wave just leaving the source will have its voltage and current characteristics of the form given by the first term on the right side of Equations 26 and 27.  At all times as this initial wave is traveling to the right, with reference to direction given
	If �then the ratio V1/I1=Zo=ZL, and the wave tra�
	If � then the ratio V1/I1\(ZL, that is, the rat�
	Keeping the general term ( for now, we can simplify further analysis by considering only the spatial part of V(z,t) and I(z,t),
	(28)
	and�  ,(29)
	where I2=V2/Zo and I1=V1/Zo, and give reference to Figure 4 for the variables z and x (to be used later).
	At the load end (�),
	(30)
	We can define a reflection coefficient � that is the ratio of the steady state reflected wave to the steady state incident wave.  Thus,
	(31)
	In terms of (L, ZL becomes
	(32)
	Solving this for (L,
	(33)
	Though we have stated that we are dealing with real values of ZL, that is purely resistive loads, this expression (Equation 33) is a general expression for all load impedances.
	(L depends on the difference between the load impedance and the impedance of the line.  (L can be positive or negative, and have a magnitude that ranges from zero to one.  We can consider several cases that will encompass all the physics:
	When ZL = Zo then (L = 0.  In this case all the power from the source is delivered to the load.  There is no reflected wave.
	When �, the line is not terminated (it is an open circuit) and (L=1.  All incident waves are reflected at the end of the line.  The reflected wave has the same amplitude as the incident wave � and there is no change in phase upon reflection (� is pos
	When � the end of the line is short-circuited and �.  The reflected wave has the same amplitude as the incident wave � and there is a 180( phase change upon reflection (� is negative).
	When � then �.  The amplitude of the reflected wave is a smaller than the amplitude of the incident wave � and there is no change in phase upon reflection (� is positive).
	When � then �.  The amplitude of the reflected wave is a smaller than the amplitude of the incident wave � and there is a 180( phase change upon reflection (� is negative).
	We are primarily concerned with what happens at the load and write our expressions for the steady state voltage and current waves accordingly.  So switching from variable z to variable x as depicted in Figure 4, we get, with � (that is (=0) and Equati
	(34)
	and similarly,�     .(35)
	V\(x\) and I\(x\) are complex expressions an�
	(36)
	Recalling that we are dealing with cases where ZL is real.  Figure 5 shows the magnitudes of the voltage and current steady state waves with different load impedances.  These are plotted as a function of x, the distance from the load.  Except in the case
	For the cases �and � (when �, � and when �, �), the magnitude of the reflection coefficient is 1 and as a consequence, the maximum possible amplitude of the steady state voltage for these two cases will be 2V1.  If you compare the sign of the reflectio
	As the load impedance approaches the impedance of the line, the amplitude of the steady state voltage approaches V1.  When � the steady state amplitude is V1, since the reflection coefficient is 0.
	The Voltage Standing Wave Ratio
	We can develop our analysis further by determining the voltage standing wave ratio (VSWR).  Expressed in terms of the maximum and minimum amplitude,
	.(37)
	When � there are no maxima or minima in the steady state voltage and VSWR=1.  Since the steady state standing waves are produced by reflection, when � the reflection coefficient is zero.  Thus there is no reflection at the load.
	When � there is reflection at the load and standing waves are produced in the line as depicted by Figure 4.  Referring to Figure 4, when �, a minima always occurs at (x = (/2 and maxima at (x = 0.  Consequently,
	.(38)
	When �, a mimima always occurs at (x = 0 and maximum at (x = (/2.  Consequently,
	.(39)
	In the cases represented by Equations 38 and 39, VSWR is greater than one.  If we know Zo (there are a limited number of commercially available coaxial transmission lines) and can determine whether � or � (recall we are dealing with ZL real), then by
	Given Equations 32 and 33, then for � and �, VSWR can be written
	.(40)
	Solving for the magnitude of the reflection coefficient,
	.(41)
	Consequently, a measurement of VSWR will not only yield ZL if Zo is known, it will also yield a value for the magnitude of the reflection coefficient.
	Procedure
	Transient waves: In this part of the experiment, you will observe the propagation of short impulses along a transmission line.
	Using the BNC tee, connect the pulse generator and channel 1 of the oscilloscope to the L end of the transmission line. The 0 end of the line should be left open-circuit.
	Observe the transmitted pulse along with any reflections on the oscilloscope. Print the waveform using the print function of your oscilloscope.
	Measure the time delay between the original pulse and the first reflection, and record this time.  Make sure that the pulse width is smaller than the delay time (using the smallest pulse width on the generator).
	Attach the short-circuit termination to the 0 end of the transmission line, and repeat the above procedure.
	Repeat the measurements using the 4.7 (, 47 (, and 470 ( terminators.
	Standing waves: In this part of the experiment, you will observe the standing wave patterns produced by interference between transmitted and reflected sine waves.
	Remove the pulse generator and replace it with the sine-wave oscillator. Attach channel 2 of the oscilloscope to the L/2 point on the line.
	With no load resistance attached to the 0 end of the line, vary the sine wave frequency and locate the lowest frequency null at the L/2 point. Record this frequency.
	Increase the frequency and locate at least two more nulls at higher frequencies.
	Return to the first null frequency and measure the voltages (using the oscilloscope) at all five tap-points on the transmission line.
	Attach the short-circuit termination to the 0 end of the line and repeat the voltage measurements at the five tap points.
	Attach each of the other terminations 4.7 (, 47 (, and 470 ( in turn, and repeat the voltage measurements at the five tap points.
	Questions To Be Incorporated Into The Lab Report
	Transient Waves: The transmission line is 81.5 m long.  How long does it take an impulse to travel two lengths of the line? What is the propagation velocity of an electromagnetic wave in the line? What is the propagation factor ([propagation velocity]/[
	Transient Waves: Measure the “a” and “b” diameter
	Transient Waves: According to electromagnetic theory, the square root of the dielectric constant should be equal to the inverse of the propagation factor. How close is it?
	Transient Waves: Discuss and explain the impulse waveforms you observed as you changed the termination resistance.  Why does the waveform change its sign when R<Zo?
	Standing waves: In the standing wave portion of the experiment, what are the wavelengths of the waves at the three null frequencies?
	Standing waves: Sketch the probable current and voltage waveforms for each value of termination resistance. Calculate the VSWR for each case.



