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It has been often claimed that the formation of a Kondo ground state requires a minimum particle ra-
dius of r>¢r=hvr/A, where A=kpTk is the width of the Kondo resonance. We suggest that this
minimum size is an artifact of the high symmetry of the sphere for which these calculations have been
performed. A similar argument applies to other resonances. This question of minimal size is investigat-
ed for a Friedel resonance in two geometries, a sphere and a parallelepiped with a noninteger ratio of its
edge lengths. A numerical calculation shows that the minimum linear size of the sample can be much

smaller than {g.

PACS numbers: 72.10.Fk, 71.55.Dp, 75.20.Hr

Wilson [1] found in his renormalization approach to
the Kondo ground state that the critical transition to an
infinitely strongly bound singlet state occurred only when
the radius of his sample became larger than g =huvr/A,
where A=kpTk is the width of the Kondo resonance.
This criteria has been often recounted since then and ac-
cepted by a majority in the solid-state community (see,
for example, [2]1). In a recent publication by Chen and
Giordano [3] the authors believe that they found experi-
mental evidence for this criteria. They investigated the
Kondo effect in thin films and found a change of the loga-
rithmic anomaly when the film thickness was reduced
below the critical length scale {g.

The essential physical origin of this critical size is the
fact that the Kondo effect creates a resonance at the Fer-
mi energy whose width is of the order of A=kgTk. The
electrons can only feel this resonance when their energy
spacing is sufficiently small so that a wave packet with an
energy width much less than kT can be constructed
which can test the width of the resonance.

If the Kondo impurity is positioned in the center of a
sphere then it couples only to the free-electron states in
the sphere with a fixed quantum number of angular
momentum. (In the theoretical model calculation one
generally considers the quantum number zero while for a
realistic impurity one has instead the quantum numbers
two or three.) The energetic distance of these states is
d=hvrn/R, where R is the radius of the sphere. All the
other states with different angular momenta do not cou-
ple to the impurity. The high symmetry of the sphere
dramatically “dilutes” the states which couple to the im-
purity. The fraction of these states is very small, only
about N _2/3, where 2N is the total number of electrons.
If we have, for example, a sphere with 10° electrons only
about 107 electrons interact with the impurity. In a less
symmetrical geometry the impurity couples to a much
larger fraction of states. For example, in a perpendicular
parallelepiped one out of eight electron states couple to
an impurity located in its center. This means that in a
parallelepiped one needs only a total of 10* electrons to
obtain the same number of coupled electrons as in a
sphere with 10° electrons. Therefore one expects that the
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minimal sample size of the Kondo effect is much smaller
for a parallelelepiped and other geometries than for a
sphere.

With respect to the minimal sample size the Kondo
effect is not different from a simple Friedel resonance in
the center of a sphere. Let us consider the following situ-
ation in which the conduction electrons ¢, are coupled to
a localized state @9 with the energy €p. The ¢4 are radial
wave functions with angular momentum /=0. The reso-
nance state ¢ is orthogonal to the ¢;. The system can be
described by the Hamiltonian

H=Y excitci+eocdcot 2 Wokcder +Vackcol . 1)
X X

The ck,cf are the annihilation and creation operators of
the radial wave functions. The Vo, are the matrix ele-
ments between the resonance state and the ¢,. Accord-
ing to Friedel [4] and Anderson [5] this coupling yields a
broadening of the resonance state with a smeared density
of states,

=1 A = (12
gR(e) z (6_60)2+A2, A K(V()k)g(), (2)
where gy is the density of states of the host for one spin
direction and the angular momentum /=0.

For this resonance problem one has the same require-
ment that the size of the sphere has to be much larger
than the “resonance length” (g =huvr/A. Only then are
there enough states within the resonance width to build a
wave packet with an energy width less than the reso-
nance.

This means that with respect to the minimal size of the
sample we have an analogous situation for the Kondo
effect and the much simpler Friedel resonance. Therefore
the Friedel resonance is a good model to check whether
this minimal sample size is real or only a theoretical ar-
tifact due to the high symmetry of the sphere (which
makes the theoretical investigations simpler).

The purpose of this paper is to compare the influence of
sample size for two geometries, the sphere and the per-
pendicular parallelepiped with a noninteger ratio of edge
lengths. (In the following we call the perpendicular

2545



VOLUME 67, NUMBER 18

PHYSICAL REVIEW LETTERS

28 OCTOBER 1991

parallelepiped a “brick.”) The above Hamiltonian (1)
describes both systems. The essential difference is that
the value for Vo, and the level separation is different in
the two geometries. We compare both geometries con-
taining 2N electrons. The volume of the brick and the
sphere is V' =2N Q/z, where Q is the atomic volume and
z is the valence of the metal. The square of the matrix
elements is |Vox|2=|Vol2Q/lex|? G.e., Vo is calculated
for the atomic volume Q).

We have for the brick the quantization of the wave
vectors k,;, =n,n/L;, and the density of states per spin is,
in an average, g(e) =3N/2¢. However, only the states
with odd quantum numbers have a finite amplitude,
lex(0)]2=(8/%) "2 at the center of the brick. As a
consequence the effective average level spacing is &,y
=16¢/3N, and the effective matrix element is |Vox|
=8|Vo|2z/2N.

On the other hand, one has for the sphere the quantiza-
tion of the radial wave number k, =n,n/R; the level spac-
ing is §=hkn/mR =¢/2n,, and the wave function at the
origin is |¢x (0)|2=k*/2zR. This yields the effective ma-
trix element |Vox|?>=|Vol?3z/2n,. The radial quantum
number at the Fermi energy is n, =(ON/27%) /3.

In both cases we find for A the value A/er =3xz|Vo/
€r|%/4. In the numerical calculation we take as the input
the number of electrons and the width of the resonance in
units of the Fermi energy A/er. All other parameters fol-
low from this input or cancel in the calculations.

The new energy eigenvalues E, of the Hamiltonian
fulfill the relation

Vo2
E,—e—Y———=0, 3)
k En—ex

and the eigenfunctions are
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Equation (3) was solved numerically. The resonance
width was chosen as A/er=0.01. From A and & one ob-
tains the matrix element Vo,. We set Vo, =0 outside of
the energy range e *+ 6A. The resonance energy is posi-
tioned exactly at the Fermi energy.

First we consider an artificial spectrum with equal
spacing. After determining the new energies one obtains
the new density of states from the inverse of the new level
spacing. The additional resonance density of states nicely
follows Eq. (2). [As a consequence of the finite-energy
range ¢r £ 6A the resulting resonance width A is 13%
larger than Eq. (2) predicts.]

For nonequal level spacing the definition of gg(e), the
change in the density of states, is more difficult since the
“unperturbed” density of states is dramatically fluctuat-
ing. However, the “occupation” of the resonance state as
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a function of energy describes the broadening of the reso-
nance state; the occupation increases with energy E, as

1
<n()(E)> E,,Z<E ]A,,|2 .

The condition that the radius of the sphere should be
much larger than {g translates into a condition for the
number of electrons: N¢> (er/A)3. Since we choose
A/ep=0.01 we find for the sphere that the number of
electrons should be much larger than 10°. An additional
factor of 10 in the linear relation, which translates into a
factor 10° for the number of electrons, is required to get
a reasonably smooth occupation curve for the sphere.
The results for a sphere with 2N =10 electrons is plotted
in Fig. 1 as the staircase curve.

For the brick we choose a ratio of corner lengths of
1:1.002:1.009. The purpose of this ratio is to avoid de-
generacy of energy eigenvalues. This is the closest ap-
proach to an irregular body which we can achieve with
the simple geometry of a brick. The full curve in Fig. |
shows the occupation of the resonance for a brick with
only 5% 104 electrons. This curve is so close to the occu-
pation for an infinite sample that we omit the curve for
the latter one.

The main result of this evaluation is that a brick with
5% 10* electrons agrees as well (or even better) with the
asymptotic result as does a sphere with 10° electrons.
Clearly the critical size for the brick is much smaller than
that of a sphere of 10g.

Besides the occupation one also likes to examine the
thermodynamic properties of the resonance. As an exam-
ple, we calculate the contribution of the resonance to the
electronic specific heat. The resonance should contribute
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FIG. 1. The occupation of the resonance as a function of

temperature. The staircase curve represents a sphere contain-
ing 10° electrons and the other curve, a brick with 5x10* elec-
trons.



VOLUME 67, NUMBER 18

PHYSICAL REVIEW LETTERS

28 OCTOBER 1991

to the specific heat the term

E, €n

2 oS TIFT  EepledkaTiF T ©

CR=

For temperatures far below A/kp this yields a contribu-
tion of cg =mk3T/3A per spin. However, a sample of
finite size has a finite level spacing &, and the specific heat
decreases exponentially at very low temperatures. In this
temperature range one expects, of course, deviations for
the small sample from the above limit.

Originally the resonance energy ¢p was placed in the
center between two levels (i.e., at the Fermi energy of the
free-electron system). To keep the Fermi energy (at
T=0) at this position the number of electrons in the elec-
tron system with resonance is increased by 3 per spin.
Furthermore, the small sample size requires that the
specific heat is calculated for constant electron number
instead of constant chemical potential. Particularly for
the brick this is an essential requirement because the fluc-
tuations in the level spacing cause a considerable temper-
ature dependence of the chemical potential.

In Figs. 2(a) and 2(b) the normalized cg/T, i.e., cr/
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FIG. 2. (a),(b) The normalized specific heat cg/T of the
finite samples. (a) represents the results of spheres with 10°,
10', 10", and 10'? electrons. (b) represents the results for a
brick with 5x10% 1x105, and 2x10° electrons. The dotted
curve represents the result for the infinite sample.

(zk3T/3A) is plotted versus kgT/A. The dotted curve
gives the result for an infinite sample. Figure 2(a) shows
the result for spheres containing 10°, 10'°, 10'!, and 10'?
electrons. The level spacing & in units of A, ie., §/A,
reduces with increasing electron number, taking the
values 0.288, 0.134, 0.062, and 0.029. One recognizes
that the spheres show the correct temperature behavior
(for kgT > 6). At kgT <38 the specific heat shows, of
course, a completely different temperature behavior.
[Since the resonance and the Fermi energy (at T=0)
were always positioned into the center between levels, the
resonance-free sample has a higher specific heat at
kgT <Al

Figure 2(b) shows the normalized specific heat for
bricks with 5x10% 1x10°% and 2x10° electrons. One
recognizes that the specific heat indeed shows a resonance
contribution for much smaller size, and therefore electron
number, than the sphere. However, if one compares brick
and sphere with the same energy spacing, then the brick
shows much stronger deviations from the theoretical
curve. This is due to the fluctuations in the level spacing
and varies from sample to sample.

The overall conclusion of this simulation is that the
brick requires a much smaller size or edge length to de-
velop a resonance than the theoretically suggested length
¢r but, on the other hand, the fluctuations in the level
spacing require an averaged level spacing 8.,y <A to ob-
tain reasonable agreement with the results for large sam-
ples.

So far we have discussed the formation of the reso-
nance in a sphere and a brick. Although the brick has a
much lower symmetry than the sphere its geometry is still
highly symmetric. Irregularly shaped bodies or large
clusters have a much lower symmetry. This will reduce
the fluctuations in the level spacing. Furthermore, a sam-
ple with a short mean free path of the conduction elec-
trons has a reduced symmetry as well. As a matter of
fact, it has been pointed out in connection with universal
conductance fluctuations [6] that a disordered electron
system shows a very small variation in the level density.
If we place the impurity (which carries the state ¢g) in
the center of the disordered body and if the square of the
wave function at the impurity does not vary too much for
the different eigenstates, then a much smaller number of
electrons is needed to develop the resonance. In this case
the original condition that the radius is much larger than
R, for example, R> hvg/A, changes into a condition on
the volume V> Qeg/A.

Another question of interest is whether reduction of the
sample dimension destroys the resonance. To check this
question we consider a bar with square-shaped cross sec-
tion whose height L, is 500 times its width and depth
Ly=L,. Here we find already for 10* electrons an agree-
ment with the predictions of the theory which is better
than for a sphere with 1x10'° electrons. In this case the
bar behaves completely one dimensionally (as the sphere)
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since only one k, and one k, quantum number are occu-
pied and the contribution of the z component to the ener-
gy yields the same level spacing as the k, states in the
sphere. The difference between the bar and the sphere is
that in the latter only the fraction n,/N couples to the
impurity. The same applies for the two-dimensional case
where only one dimension is restricted. Therefore the ex-
treme case of a monolayer yields a full resonance (with a
different A).

I believe that all the above conclusions apply also for
the Kondo effect. Unfortunately, considering the com-
plexity of the exact solution of the Kondo problem [7,8],
as well as its numerical solution [1], it appears quite hard
to perform a similar evaluation for the exact Kondo reso-
nance. However, one may give the numerical solution of
Wilson the following interpretation: As a consequence of
the exchange interaction the electron system forms a lo-
calized state, in Wilson’s notation the state f,. This state
forms a singlet state with the impurity S+s-—S -5+,
where S+ represents the impurity spin up and s — the fo
spin down and vice versa. The resonance state is the
unoccupied spin component of the state fo, which is cou-
pled to the extended (quasifree) electron states. This
coupling causes a broadening of the resonance state. This
description is actually derived in more detail in the
“slave-boson” model of the Kondo problem (see, for ex-
ample, the review article [9]).

The requirement that the radius of the sphere R is
much larger than (g, i.e., the level spacing for the cou-
pled /=0 states is much less than A=kpTk, enters the
Kondo problem at two points: (i) The formation of the lo-
calized state fo requires a sufficiently small level spacing
& on the energy scale of A and (ii) the extended states
smear the resonance state only sufficiently smoothly when
KA.

If we assume in accordance with the majority of
theoretical papers that the Kondo impurity has a &-like
exchange potential, then it couples in perfect analogy to
the Friedel resonance to all standing waves in the brick
with noninteger quantum numbers. Our conclusions ap-
ply therefore also to the Kondo effect: The critical sam-
ple size can be much smaller than 10{g. The only re-
quirement is that the level spacing of the extended states
is much smaller than A=kgTk.

It is often argued that the magnetic moment requires a
screening spin cloud with a radius of, at least, {g, or oth-
erwise one has an incomplete screening of the impurity
spin. If the resonance state fo is constructed from the
eigenfunctions of the brick (or any other body form) and
the impurity forms a singlet state with fo, then this
yields, of course, a perfect screening of the impurity spin
within the surface of the body. There is no loss in the
screening cloud.

There is an argument of Nozieres [10] which, if one in-
terprets it appropriately, confirms this conclusion. No-
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ziéres points out that within the radius {g of a Kondo im-
purity one can place ({gkr)? additional Kondo impurities
and all of them will find their screening electron because
the s electron of one impurity is (almost) orthogonal to
the s electron of the other impurities, even when their dis-
tance is within {z. (While Nozieres uses (g =huvr/A, 1
obtain from the numerical evaluation that one needs at
least another factor of 10 in the characteristic length to
obtain a reasonable resonance.) As a consequence, a sin-
gle impurity needs N =(10er/A)? electrons in a sphere to
develop the Kondo singularity. However, it can share its
volume with (10kp¢r)?=(10er/A)? other impurities.
We might interpret this result such that the number of
electrons which one needs per impurity to obtain the
Kondo effect is just 10er/A. This means for kgTx =A
=¢r/100 that one needs a volume with 10° electrons for
a single impurity but one can dissolve in this volume an
additional 10% impurities and each individual impurity
needs only 10° electrons to compensate its moment.
From this point of view it might appear less surprising
that in a brick 5% 10* electrons are needed for the com-
pensated ground state (the additional factor is needed be-
cause the energy spectrum of the brick has a strongly
varying energy spacing).

This agrees well with the results of an experiment
which our group performed a few years ago [11]. In this
experiment a thin sandwich was condensed consisting of a
30-atomic-layer-thick Mg film, which was covered with
0.005 atomic layer of Fe. Then the Fe was covered in
different steps with increasing thickness of Mg. In each
step the magnetic scattering time was measured by means
of weak localization. The dephasing rate did not change
with the thickness of the second Mg film (after the transi-
tion from a surface to a bulk impurity was completed).
This indicates that the formation of the Kondo singlet
state and the screening of the magnetic impurity was not
hindered by the thin film.
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