Contents

I. Symmetries of the Action
   A. Noether’s theorem
   B. Global symmetry
   C. Local symmetry and constraints
   D. Rotation group
   E. Lorentz group
   F. Poincare group, spin and mass
   G. Little groups for massless and massive particles
   H. Colors and flavors
   I. Explicitly broken versus spontaneously broken symmetries
   J. Hidden nonlinear symmetries

II. Particle actions with global symmetry
   A. Relativistic massless and massive particle
   B. Spinning particles
   C. Gamma matrices
   D. Supersymmetry and superPoincare group
   E. Superparticle with N supersymmetries
   F. Particle in background fields (Maxwell, Einstein, SUSY, etc.)
   G. Off-shell superparticle
   H. Particle with spin and internal symmetry

III. Classification of Groups and Supergroups
   A. Division algebra approach
   B. Cartan approach
   C. SU(n), SO(n), Sp(2n), SU(n|m), OSp(n|2m) in smallest matrix representation
   D. Exceptionals and the others
   E. General setup of commutation rules (h,g,t)
   F. Gamma matrix representation of generators
   G. Subgroup structures
   H. Cosets
   I. Triangular decomposition
   J. Hermitian symmetric spaces
IV. Representation theory of groups and supergroups
   A. SU(2), SU(3), others
   B. Oscillator representations
   C. Cartan basis and weights
   D. Tensors for SU(n), SO(n), Sp(2n), SU(n|m), OSp(n|2m)
   E. Young tableaux
   F. Dynkin diagrams
   G. Products of representations, reductions, YT methods
   H. D-functions
   I. Characters
   J. Dimensions
   K. Indices
   L. SU(n|m) from SU(n-m), etc.
   M. Group integration
   N. Generating function for group integrals
   O. Group tables and how to use them

V. Noncompact (super)groups and their representations
   A. SL(2,R), SL(2,C), SU(2,1)
   B. Oscillator representations
   C. Induced representations, coherent states, etc.
   D. Applications in compactification of SUGRA and Strings

VI. Local (super)symmetries of the action
   A. Reparametrizations, particles, strings, branes
   B. Local Sp(2,R) and 2T-physics
   C. Gauge fixing
   D. Covariant quantization
   E. Unification of 1T dynamics via 2T dynamics
   F. (d,2) to (d-1,1) holography and dualities

VII. Conformal and superconformal symmetry
   A. Twistor and supertwistor in 4 dimensions
   B. Generalization of twistors to higher dimensions
   C. Super Yang Mills theory, SU(2,2|4) and twistors
   D. AdS$_5 \times$S$^5$ SU(2,2|4) and twistors
   E. OSp(8|4), twistors and conformal systems

VIII. From quantum particles to field theory
   A. Spinless particle and Klein-Gordon field
   B. Spin 1/2 particle and Dirac field
C. Spin 1 particle and Maxwell field 7
D. Higher spin fields 7
E. The twistor approach 7

IX. Gauge symmetry in field theory 8
   A. Maxwell field and U(1) 8
   B. Yang-Mills and general G 8
   C. Chern-Simons action 8
   D. Standard Model and SU(3)x SU(2)x U(1) 8
   E. Spontaneous breakdown of symmetry 8
   F. Grand unified symmetries and field theories 8
   G. Gravity 8
   H. Supergravity 8
   I. Conformal gravity 8
   J. Compactification in field theory 8
   K. Kaluza-Klein modes 8
   L. String field theory and Chern-Simons action 8
   M. Star products 8
   N. Infinite gauge algebra for higher spin fields 8

X. Infinite dimensional symmetries 8
   A. Current algebra 8
   B. Kac-Moody algebra 8
   C. Free field representations 8
   D. Vertex operators 8
   E. Conformal field theory methods 8
   F. Sugawara construction 8
   G. Gauged WZW model, cosets of KM algebra 8
   H. Strings and superstrings in backgrounds with exact conformal symmetry 8

XI. Group integration 9
   A. Generating function for group integrals 9
   B. Large N methods 9
   C. Matrix models 9
   D. Lattice gauge theory 9

XII. Spectrum of strings and superstrings 9
   A. Bosonic string in lightcone gauge 9
   B. GS superstring in lightcone gauge 9
   C. Assembling SO(8) into SO(9) little group 9
   D. Assembling SO(9) into SO(10) little group 9
XIII. Uses of supersymmetry

A. Supersymmetric Standard Model
B. Supersymmetric grand unification
C. BPS states
D. Supersymmetric compactification and CY spaces
E. Higherarchy problem
F. Breaking of SUSY
G. Cosmological constant problem
H. Will SUSY be found at the LHC?
I. Supersymmetric quantum mechanics
J. Supersymmetry in Nuclear Physics