PRODUCT OFFER
TECHNICAL
THE SYNTHETIC ADVANTAGE
Benefits of Synthetics - Overview

- Synthetic oils offer **performance & protection benefits** superior to conventional oils

- Higher Viscosity Index ➔ Wide Operating Temperature Range ➔ Reduced Wear
- Better Low Temperature Properties ➔ Faster Oil Circulation ➔ Reduced Wear
- Lower Volatility ➔ Reduced Oil Burn Off / Evaporation ➔ Lower Oil Consumption
- Lower Traction ➔ Increased Efficiency ➔ Better Fuel Economy
- Increased Oxidative Stability ➔ Less Oil Thickening ➔ Longer Oil Life
Benefits of Synthetics - Viscosity Index (VI)

- Viscosity Index (VI) represents the rate of change of viscosity with temperature
- Oils with higher VI maintain viscosity better as temperature varies
 - At hotter temperatures, the oil becomes thinner (viscosity decreases) and provides less engine protection
 - At colder temperatures, the oil thickens (viscosity increases) and becomes more difficult to pump around the engine

- Synthetic oils have higher VI than conventional oils
- So, synthetic oils provide better engine protection across a wider range of temperatures
- At more extreme temperatures, the benefit becomes greater
Benefits of Synthetics - Low Temperature Properties

- Wax is a large hydrocarbon molecule that prevents oil from flowing at colder temperatures
- Synthetics contain less wax than conventional oils
- Synthetics remain fluid at lower temperatures than conventional oils
- Cold, thick oil is more difficult for the engine to pump, resulting in less protection at start-up

360x magnification of wax in conventional oil at -18°C (0°F)
360x magnification of synthetic oil at -18°C
Benefits of Synthetics - Oxidative Stability

- Oxidative stability is the ability of oil to resist breakdown caused by combining with oxygen
- More weak spots in mineral oil allow faster oxidation
- Synthetics have fewer weak spots and so resist oxidation for a longer time
 - As oxidation increases, the oil thickens
 - Also, the engine oil loses its ability to control deposits & varnish
Benefits of Synthetics - Efficiency

- Due to a more consistent molecular structure, synthetics have lower traction than mineral oils.

- Lower traction means less internal friction within the fluid.

- Less friction within the fluid has several benefits:
 - Lower generation of heat within the fluid
 - Improved efficiency

![Synthetic Oil](image1.png)

![Mineral Oil](image2.png)
PRODUCT OFFER
TECHNICAL
MOBIL SUPER
Interactive Session – Driving Conditions

- Different types of **driving** and different types of **conditions** put different levels of stress on an engine and the engine oil

- Discuss different driving conditions and whether they are likely to be high, medium, or low stress?
Driving Conditions – Stress Levels

<table>
<thead>
<tr>
<th>OPERATING CONDITIONS</th>
<th>TYPICAL SITUATIONS</th>
<th>ENGINE STRESS LEVEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGHWAY</td>
<td>Cruising</td>
<td>Low</td>
<td>Highway driving allows the engine oil to operate at the optimum temperature so that fuel and moisture don't build up in the oil.</td>
</tr>
<tr>
<td></td>
<td>High Speed</td>
<td>Medium</td>
<td>Rapid acceleration and high speed driving causes higher oil temperatures and lower oil viscosity, resulting in the need for greater engine protection.</td>
</tr>
<tr>
<td>CITY</td>
<td>Stop & Go Driving</td>
<td>High</td>
<td>The oil does not heat up sufficiently to burn off the moisture and fuel that build up due to heavy idling, which can cause corrosion and sludge.</td>
</tr>
<tr>
<td></td>
<td>Traffic</td>
<td>High</td>
<td>Becoming stuck in traffic after a period of high speed driving may result in increased thermal stress on the engine.</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td>Cold Weather</td>
<td>Very High</td>
<td>Oil thickens at low temperature, making it harder to pump around the engine and take longer to reach and protect critical engine parts.</td>
</tr>
<tr>
<td></td>
<td>Hot Weather</td>
<td>Medium</td>
<td>In hot weather it becomes tougher to remove heat from the oil. Elevated oil temperatures result in less protection between moving engine parts.</td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>Medium</td>
<td>Moisture build up in the oil may lead to formation of acidic components which can corrode metal parts and shorten oil life.</td>
</tr>
<tr>
<td></td>
<td>Dusty Environments</td>
<td>High</td>
<td>Dirt and sand can make their way into the oil and cause accelerated wear of moving engine parts.</td>
</tr>
</tbody>
</table>
Driving Conditions – Stress Levels

<table>
<thead>
<tr>
<th>OPERATING CONDITIONS</th>
<th>TYPICAL SITUATIONS</th>
<th>ENGINE STRESS LEVEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diesel & Direct Injection Engines</td>
<td>Medium</td>
<td>Soot particles can build up in the oil, and if allowed to agglomerate can cause abrasive wear within the engine.</td>
</tr>
<tr>
<td></td>
<td>Turbochargers</td>
<td>Very High</td>
<td>Low quality oils can become cooked onto the turbocharger, eventually causing it to fail.</td>
</tr>
<tr>
<td></td>
<td>Fuel Quality</td>
<td>Very High</td>
<td>Poor fuel quality can mean that aggressive fuel components get into the oil, leading to poisoning of the engine oil and the creation of sludge.</td>
</tr>
<tr>
<td></td>
<td>Extended Oil Drains</td>
<td>High</td>
<td>Many modern vehicles promote longer intervals between oil changes. This requires higher quality engine oil which can resist breakdown longer.</td>
</tr>
<tr>
<td></td>
<td>Towing or People Moving</td>
<td>High</td>
<td>Heavily loaded vehicles place increased strain on the engine, requiring an increased level of protection from the oil.</td>
</tr>
<tr>
<td></td>
<td>Racing</td>
<td>Very High</td>
<td>Rapid acceleration and very high speeds demand that the oil works extremely hard to properly protect the engine.</td>
</tr>
</tbody>
</table>
Different operating conditions put different stresses on your engine:

<table>
<thead>
<tr>
<th>Operating Conditions</th>
<th>Typical Engine Stress Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway</td>
<td></td>
<td>Highway driving allows the engine oil to operate at the optimum temperature so that fuel and moisture don’t build up in the oil.</td>
</tr>
<tr>
<td>City</td>
<td></td>
<td>Rapid acceleration and high speed driving causes higher oil temperatures and lower oil viscosity, resulting in the need for greater engine protection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The oil does not heat up sufficiently to burn off the moisture and fuel that build up due to heavy idling, which can cause corrosion and sludge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Becoming stuck in traffic after a period of high speed driving may result in increased thermal stress on the engine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil thickens at low temperature, making it harder to pump around the engine and take longer to reach and protect critical engine parts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In hot weather it becomes tougher to remove heat from the oil. Elevated oil temperatures result in less protection between moving engine parts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moisture build up in the oil may lead to formation of acidic components which can corrode metal parts and shorten oil life.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirt and sand can make their way into the oil and cause accelerated wear of moving engine parts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soot particles can build up in the oil, and if allowed to agglomerate can cause abrasive wear of engine parts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turbochargers are prone to deposit formation due to the very high operating temperatures (often up to 650°F). Low quality oils can become cooked onto the turbocharger causing it to fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poor fuel quality can mean that aggressive fuel components get into the oil, leading to poisoning of the engine oil and the creation of sludge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Many modern vehicles promote longer intervals between oil changes. This requires higher quality engine oil which can resist breakdown longer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heavily loaded vehicles place increased strain on the engine, requiring an increased level of protection from the oil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid acceleration and very high speeds demand that the oil works extremely hard to properly protect the engine.</td>
</tr>
</tbody>
</table>
Mobil Super: Cold Temp. Performance

Test Description
In the CCS test (Cold Crank Simulator), the oil is cooled to the test temperature (e.g. -25°C). Oil viscosity, or resistance, is then measured under high shear conditions.

Consumer Relevance
The test simulates low temperature start-up capability. Oils with lower CCS values ensure less resistance for the bearings and piston rings to overcome. This results in quicker start times, meaning less strain on the engine and battery.

Cold Cranking Viscosity at -25°C

<table>
<thead>
<tr>
<th>CCS (mPa.s)</th>
<th>Mobil Super 3000</th>
<th>Mobil Super 2000</th>
<th>Mobil Super 1000*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,000</td>
<td>4,000</td>
<td>12,000</td>
</tr>
<tr>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 15W-40

Relevant Part of Engine
bearings, piston rings
Mobil Super 3000: Additional Detergency & Dispersancy

Detergency & Dispersancy

<table>
<thead>
<tr>
<th></th>
<th>Detergency</th>
<th>Dispersancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobil Super 3000</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Mobil Super 2000</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Mobil Super 1000</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Significantly more detergent and dispersant power

Condition
In motor oil, detergents and dispersants work by holding contaminants safely within the oil rather than being deposited on engine surfaces.

Consumer Relevance
By-products of the combustion process enter the engine oil. Many of these by-products are highly reactive and ultimately lead to the formation of deposits, such as sludge and varnish. An oil with a higher level of detergency and dispersancy will keep the engine operating more efficiently as it will remain cleaner for longer.
Mobil Super: Deposit Control

Deposit Control (Thin Film Oxidation Test)

Mobil Super 3000
(Rating = 63 / 100)

Mobil Super 2000
(Rating = 49 / 100)

Test Description
The test oil is heated to 285°C and directed onto a rapidly spinning (2500rpm) aluminum disc which is heated to 330°C. The test duration is 3 hours. At the end of test, the oil is assigned a cleanliness merit rating out of 100.

Consumer Relevance
The test simulates high temperature piston deposit formation. Oils of lower oxidative and thermal stability will cause greater deposit formation. As piston deposits increase, engine efficiency decreases.

Relevant Part of Engine
pistons
PRODUCT OFFER
TECHNICAL
MOBIL 1
Mobil 1: Cold Start Performance

Cold Start Performance

<table>
<thead>
<tr>
<th>Fluid Resistance (CCS at -30°C)</th>
<th>New Life 0W-40</th>
<th>Peak Life 5W-50</th>
<th>Extended Life 10W-60</th>
</tr>
</thead>
</table>

Test Description

In the CCS test (Cold Crank Simulator), the oil is cooled to the test temperature. Oil viscosity, or resistance, is then measured under high shear conditions.

Consumer Relevance

The test simulates low temperature start-up capability. Oils with lower CCS values ensure less resistance for the bearings and piston rings to overcome. This results in quicker start times, meaning less strain on the engine and battery.
Mobil 1: Cold Temperature Performance

Test Description
Vehicle engines are filled with test oil, then parked overnight in a cold chamber. In the morning, the ignition key is turned and the total time taken to reach full oil pressure at the furthest point in the engine is recorded.

Consumer Relevance
The test simulates low temperature pumpability and cold starting. If the oil is not pumped quickly, the engine may take longer to fire, and it will take longer for the engine to achieve full oil pressure. This can result in poor lubrication and a higher rate of engine wear.
Mobil 1: Deposit Control

Deposit Control (Thin Film Oxidation Test)

- Mobil 1 New Life 0W-40
 (Rating = 90 / 100)

- Market General Fully Synthetic
 (Rating = 63 / 100)

- Market General Semi-Synthetic
 (Rating = 49 / 100)

Test Description
The test oil is heated to 285°C and directed onto a rapidly spinning (2500rpm) aluminum disc which is heated to 330°C. The test duration is 3 hours. At the end of test, the oil is assigned a cleanliness merit rating out of 100.

Consumer Relevance
The test simulates high temperature piston deposit formation. Oils of lower oxidative and thermal stability will cause greater deposit formation. As piston deposits increase, engine efficiency decreases.
Mobil 1: Engine Cleanliness

Piston Cleanliness

![Comparative Piston Rating]

- Mobil 1 Peak Life 5W-50
- Market General Fully Synthetic

Test Description
The Sequence IIIG test measures oil thickening and piston deposits during high temperature conditions. Oil temperature is 150°C for 100 hours.

Consumer Relevance
The test simulates high speed driving in very hot weather conditions.

![Pistons at End of Test]

Pistons at End of Test

- Better
- Mobil 1
- Market General Fully Synthetic

ExxonMobil
Lubricants & Specialties
Mobil 1: Oil Consumption / Oil Burn-Off

Test Description
In the Noack volatility test, the oil is heated to 250°C for 1 hour. The amount of oil that evaporates is measured.

Consumer Relevance
The test evaluates the oil’s resistance to burn-off under high temperatures which cause lighter constituents within the oil to vaporize. Higher volatility equates to higher oil consumption, and the need for more oil top-up.
Mobil 1: Protection for Older Vehicles

Test Description

The HTHSV test (High Temperature High Shear Viscosity) measures the oil viscosity at 150°C under high shear conditions.

Consumer Relevance

The test simulates engine conditions experienced by the oil in areas such as the bearings where it is important that the oil film remains thick enough to prevent damage from metal-to-metal contact. Modern engines are designed to cope with thinner oils, but many older engines require thicker oils to ensure adequate protection.
Mobil 1: Fuel Economy

Background

Certain engine oil specifications require a fuel economy test limit to be achieved in order to meet the requirements of that specification. More demanding specifications set tougher limits (e.g. the Mercedes-Benz specification system uses tiered fuel economy limits).

Consumer Relevance

Oils meeting the toughest specifications such as MB 229.5 must provide improved fuel economy compared to less stringent specifications such as MB 229.1.
Mobil 1: Wear Protection

Improved Wear Performance

<table>
<thead>
<tr>
<th>Comparative Wear Performance</th>
<th>Mobil 1 New Life 0W-40</th>
<th>Mobil Super 3000</th>
<th>Mobil Super 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB 229.5</td>
<td>Better</td>
<td>MB 229.3</td>
<td>MB 229.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Description

Certain engine oil specifications require a minimum passing wear requirement to be achieved. More demanding specifications set tougher limits (e.g. the Mercedes-Benz specification system uses tiered cylinder wear limits in some engine tests).

Consumer Relevance

Oils meeting higher performance specification such as MB 229.5 offer improved wear protection. Reduced levels of wear ensure a healthier engine and longer engine life.
Mobil 1 Extended Life: Seal Swell Additive

Condition

With prolonged exposure to engine oils and high temperatures, seal materials used throughout your engine deteriorate as they age.

Consumer Relevance

Deteriorated seals can result in increased oil consumption, as engine oil can leak past them. Additional seal swell additives help by causing aged seals to expand in volume, thereby reducing the likelihood of increased oil consumption.

Seal Swell Additive Content

- **New Life 0W-40**
- **Peak Life 5W-50**
- **Extended Life 10W-60**

Approximately 55% more seal swell additives
Mobil 1: Clean-Up

Before and After Photos of Engine Top Deck

Before

After

Testing carried out in a controlled environment
(American vehicle after 21,000 miles)

Test Description
A European and an American vehicle that had been run with conventional oil were switched to Mobil 1.

Outcome
After 14,000 miles of driving with Mobil 1 at recommended oil drain intervals, the European vehicle returned to near new levels of cleanliness. The American vehicle experienced even greater improvements.
PRODUCT OFFER
TECHNICAL
VISOM MOBIL 1
AGENDA

- Why are we reformulating Mobil 1?
- What’s the customer communication strategy?
- Technical comparison of current v new formulations
 - Performance Profile
 - Oxidation
 - Deposit Control
 - Volatility
 - Viscosity Control
 - Cleanliness
 - Wear
 - Diesel Performance
 - Low Temperature – Pour Point
 - Low Temperature – MRV
 - Analytical Comparison
Why are we reformulating Mobil 1?

- **A natural evolution of the formulation**
 - The Mobil 1 formulation strategy has always been based on selecting the best components available. We now have the very high quality Group III+ base stock, ‘Visom’ exclusively available to ExxonMobil. As we developed the Mobil 1 ESP technology we found that combining Visom with PAO could deliver a formulation of equivalent performance to an all PAO formulation.

- **Competitive advantage**
 - Visom is the only non-PAO stock that can deliver the required performance to formulate a 0W grade oil that meets European OEM engine oil specifications. Visom is not available to our competition.

- **To support Mobil 1 growth**
 - Global PAO capacity is limited. As we quickly approach this limit, new base stocks must be explored to ensure we can support the continued growth of the Mobil 1 family of products.
Why are we reformulating Mobil 1?

- To ensure continuity of supply
 - As we saw with the 2005 hurricane, the more flexibility we have in our formulations, the better placed we are to withstand disruption to our supply. We can balance PAO and Visom supply fluctuations to ensure we can always deliver the final product to our customers.

- To maintain market relevant pricing
 - As PAO supply has tightened globally, raw material costs have increased substantially. In the future, an exclusively PAO formulation may be priced out of the market or result in significant margin erosion.

- To prepare for next generation basestocks (GTL)
 - Commencing 2010, the next generation of base stocks derived from Natural Gas (Gas To Liquids) will enter the market. These high quality basestocks will arrive in substantial quantities and will probably be used in the majority of competitive premium formulations. Visom is viewed as a precursor of GTL, and hence it’s use now in our flagship formulations eases our transition to a GTL world, and helps us understand how to maintain flagship performance using these high quality non-PAO basestocks.
What is the communication strategy?

- With the exception of Germany, this reformulation will be invisible to consumers and B2B customers.
 - Claims are identical with the exception of some now obsolete or soon to be obsolete claims
 - Performance of new formulations are equivalent to current formulations
 - Testing is underway to provide read-across of current marketing claims to new formulations
 - Review will take place of current marketing literature to ensure accuracy of specific claims to new formulations (e.g. if we quote actual pour point values then this would need to be updated).
 - There will be no proactive customer communication relating to this reformulation. However, an internal briefing document and Q&A has been prepared to allow sales to respond in the unlikely event of a customer question.

- Due to the unique definition of synthetic in Germany (Synthetic = 100% PAO) this reformulation is visible to the consumer and B2B customers.
 - A more proactive communication is being prepared for German use
• **Mobil 1 ‘Ages’** family was designed from a very strong technology platform.

• **Mobil 1 ‘Ages’** builds upon the strength of **Mobil 1 0W-40** by incorporating some of the latest formulation advances contained in **Mobil 1 ESP Formula 5W-30**.

• **Mobil 1 ‘Ages’** was developed as a standard ash formulation to address the needs of engines that do not require a low ash product.
Mobil 1 ‘Ages’ Technology

• Anti-wear system
• SuperSyn Technology
• Dispersant system
• Anti-oxidant system
• Detergent system

‘Old’ Mobil 1 0W-40

Mobil 1 ‘Ages’ 0W-40

• Shear stable viscosity modifier
• Base stock composition
 – Thermally stable ester
 – GTL precursor
• Friction modifier

Mobil 1 ESP Formula 5W-30
Mobil 1 0W-40 Technical Comparison

NOTE: Terminology

Future Mobil 1

Mobil 1 ‘Ages’ Family

- Mobil 1 New Life 0W-40
- Mobil 1 Peak Life 5W-50
- Mobil 1 Extended Life 10W-60
Performance Profile

<table>
<thead>
<tr>
<th>API</th>
<th>Current 0W-40</th>
<th>Future 0W-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SL</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SL (EC)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SJ</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CF</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3/B3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A3/B4</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ILSAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF-3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229.3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>229.5</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>503.01</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>502.00</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>505.00</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BMW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL-01</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Opel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Service Fill GM-LL-B-025</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10850</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Porsche</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Special Oil List</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- **API SL (EC) – Obsolete**
- **ILSAC GF-3 – Obsolete**
- **VW 503.01 – Spec will become obsolete in 2009**

(Note: VW 504.00 can be used to cover VW 503.01 applications)
Visual Comparison

Mobil 1 New Life 0W-40

Current Mobil 1 0W-40
Bench Test Comparison – Oxidation

Thin Film Oxidation (TFO)

- **Current**
 - Mobil 1 0W-40
 - Rating = 94 / 100

- **Future**
 - Mobil 1 0W-40
 - Rating = 90 / 100

- **Esso Ultron**
 - 5W-40
 - Rating = 63 / 100

Test Description

The test oil is heated to 285°C and directed onto a rapidly spinning (2500rpm) aluminum disc which is heated to 330°C. The test duration is 3 hours. At the end of test the oil is assigned a cleanliness merit rating out of 100.

Consumer Relevance

The test simulates high temperature piston deposit formation. Oils of lower oxidative and thermal stability will result in greater deposit formation. As piston deposits increase, engine efficiency decreases.
Bench Test Comparison – Deposit Control

Test Description

The test oil is heated to 285°C and slowly circulated through a metal spiral for a period of 24 hours. The weight of the deposits that accumulate on the metal rod are measured.

Consumer Relevance

The test simulates high temperature piston deposit formation. Oils of lower oxidative and thermal stability will result in greater deposit formation. As piston deposits increase, engine efficiency decreases.
Bench Test Comparison - Volatility

Test Description

The test oil is placed in an evaporation dish within a heating block, and the oil is held at a temperature of 250°C, and under reduced pressure, for 1 hour. The amount of volatilized oil is measured.

Consumer Relevance

The test simulates engine oil consumption as a result of oil burn-off. Oils with low volatility will result in a lower rate of oil consumption.
Engine Test Comparison – Viscosity Control

Test Description
Severe 248 hour test designed for gasoline engines following extended oil drain intervals. Oil temperature cycles in range of 40°C – 133°C.

Consumer Relevance
The test simulates high temperature stop & go driving with extended oil drain interval and without oil top-up.

Graph
- **Volkswagen T4**
- **End of Test Viscosity, mm²/s**
- **Current Mobil 1 0W-40**
- **Future Mobil 1 0W-40**
- **Maximum Allowable**

Better
Engine Test Comparison - Cleanliness

Test Description
The Sequence IIIG test measures oil thickening and piston deposits during high temperature conditions. Oil temperature is 150°C for 100 hours.

Consumer Relevance
The test simulates high speed driving in very hot weather conditions.
Engine Test Comparison – Wear

M271 Wear
- 270-hr proprietary engine test designed by Mercedes-Benz

![Graph showing wear comparison](image)

- **Blue** = Mobil 1 0W-40 (current)
- **Green** = Mobil 1 0W-40 (future)
Engine Test Comparison – Diesel Performance

Test Description
The VW TDi engine test uses a direct injection diesel engine. Duration is 54 hours. Bulk oil temperature reaches 145°C.

Consumer Relevance
The test is designed to simulate high temperature stop and go driving, with emphasis on piston cleanliness and ring sticking.

Test Description
- **Volkswagen TDi (PV 1452)**
- Duration: 54 hours
- Bulk oil temperature reaches 145°C

Piston Merit vs. Reference Oil

<table>
<thead>
<tr>
<th></th>
<th>Current Mobil 1 0W-40</th>
<th>Future Mobil 1 0W-40</th>
<th>Esso Ultron 5W-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bench Test Comparison – Low Temperature

Pour Point (Typical Values)

<table>
<thead>
<tr>
<th></th>
<th>Current Mobil 1 0W-40</th>
<th>Future Mobil 1 0W-40</th>
<th>Esso Ultron 5W-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pour Point (°C)</td>
<td>-27</td>
<td>-31</td>
<td>-42</td>
</tr>
</tbody>
</table>

Test Description

The pour point test measures the ability of an oil to flow at very low temperatures. The oil is cooled relatively quickly in -3°C increments and its ability to flow at successively lower temperatures is measured.

Consumer Relevance

The test is somewhat historical, dating back to 1917. From a technical perspective, attributes such as pumpability (MRV) and cold cranking viscosity (CCS) are considered more relevant to engine performance.
Bench Test Comparison – Low Temperature

Low-Temperature Pumpability (MRV)

- **0W-XX Limit**
- **Far better than industry requirement**

Test Description
In the MRV test (Mini Rotary Viscometer), the oil is gradually cooled to the test temperature overnight (-40°C). This slow cooling allows any wax to crystallize. The oil’s resistance to flow is then evaluated.

Consumer Relevance
The test simulates low temperature pumpability (e.g. starting a car on a cold winter morning). If the oil cannot be pumped, then lubrication will be inadequate, resulting in engine damage.
Very little difference in analytical properties between the two formulations

<table>
<thead>
<tr>
<th></th>
<th>Current 0W-40</th>
<th>Future 0W-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM Color</td>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>Kinematic Viscosity 100°C, mm2/s</td>
<td>14.3</td>
<td>13.5</td>
</tr>
<tr>
<td>HTHS, cP</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Phosphorus wt %</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Molybdenum, ppm</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Calcium, wt %</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Boron, ppm</td>
<td>231</td>
<td>230</td>
</tr>
<tr>
<td>Nitrogen, ppm</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Noack, % lost</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Total Base Number, mgKOH/mg</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>CCS, cP @ -35°C</td>
<td>5600</td>
<td>5700</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-54</td>
<td>-48</td>
</tr>
<tr>
<td>MRV, mPa*s @ -40°C</td>
<td>22000</td>
<td>29000</td>
</tr>
<tr>
<td>Sulfated ash, % m/m</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Kinematic Viscosity 40°C, mm2/s</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td>Density, g/ml</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>194</td>
<td>185</td>
</tr>
</tbody>
</table>