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ABSTRACT

In this talk I review the status of various perturbative and non-perturbative dual-
ity symmetries in toroidally compactified heterotic string theories in dimensions
four, three and two.

In this talk I shall be discussing (conjectured) duality symmetries in string
theories in dimension ≤ 4. The talk will be divided into three main parts.
In the first part I shall discuss duality symmetries in four dimensional string
theory. The second part of the talk will be on duality symmetries in three
dimensional string theory. Finally, in the last part of the talk I shall dis-
cuss duality symmetries in two dimensional string theory. The talk will be
based on refs.1,2,3. Many related developments have been reported in other
contributions to this volume.

Throughout this talk, a D dimensional string theory will refer to het-
erotic string theory compactified on a (10 − D) dimensional torus. Such
backgrounds are not phenomenologically interesting, since even for D = 4
it represents a theory with extended N = 4 supersymmetry, and as a result
does not contain chiral fermions. However, the hope is that by studying sym-
metries of string theory around various backgrounds we may learn something
about symmetries of a background independent formulation of string theory.
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Also, such studies may give us a clue as to what to expect for a more realistic
string compactification.

So let us begin our discussion with heterotic string theory compactified
on a 6 dimensional torus.4. The massless scalar fields in this theory (also
known as moduli fields) can be divided into two sets. One set parametrizes
the coset O(6, 22)/(O(6)×O(22)) and is labelled by a 28× 28 matrix valued
scalar field M satisfying the relations

MT = M, MLMT = L , (1)

where

L =


σ1

·
·
σ1

−I16

 σ1 =
(

1
1

)
. (2)

Physically M represents the internal components of the ten dimensional met-
ric, anti-symmetric tensor field, and gauge fields belonging to the Cartan
subalgebra of the gauge group E8 × E8 or SO(32). The second set of scalar
fields is the axion-dilaton system, parametrizing the coset SL(2, R)/SO(2)
and labelled by a complex scalar field

λ ≡ Ψ + ie−Φ ≡ λ1 + iλ2 , (3)

where Ψ denotes the axion field obtained by dualizing the anti-symmetric
tensor field Bµν in four dimensions, and Φ denotes the usual dilaton field.

We shall now discuss the action of different duality symmetries on the
scalar moduli fields. The action of the first kind of duality transformation,
known as T -duality transformation, is as follows:

M → ΩMΩT , λ→ λ , (4)

where Ω ∈ O(6, 22;Z). In practice this means that

ΩLΩT = L , (5)

and that Ω preserves a 28 dimensional even, self-dual, Lorentzian lattice Λ28

with metric L. Although we can take for Λ28 any even, self-dual, Lorentzian
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lattice, we shall work in a definite convention where the lettice is spanned by
vectors of the form:

m1

·
·
·

m12
~k


, mi ∈ Z, ~k ∈ ΛE8×E8 . (6)

Here ΛE8×E8 denotes the E8 × E8 root lattice. The important point to note
from eq.(4) is that the T-dualiy transformations do not act on λ. From the
definition (3) of λ it follows that

〈λ〉 =
θ

2π
+

i

g2
, (7)

where θ denotes the usual vacuum angle, and g2 denotes the string loop
expansion parameter. Thus T -duality does not transform the string loop
expansion parameter and is a symmetry that holds order by order in string
perturbation theory. This makes T -duality easy to test.

The second kind of (conjectured) duality symmetry, known as the S-
duality transformation, acts on M and λ as,

M →M, λ→ pλ+ q

rλ+ s
, p, q, r, s ∈ Z, ps− qr = 1 . (8)

This constitutes an SL(2,Z) group of transformations. Note, however, that
this transformation does have non-trivial action on λ, and hence the string
loop expansion parameter. We therefore cannot expect S-duality to hold
order by order in string perturbation theory, and this makes this symmetry
difficult to test.

In order to get a deeper insight into the role of these two duality trans-
formations, we can examine their action on the gauge fields. The theory
contains 28 abelian gauge fields A(a)

µ (1 ≤ a ≤ 28, 0 ≤ µ ≤ 3) of which 16
arise from the Cartan subalgebra of the original E8 × E8 or SO(32) gauge
fields, 6 arise from the components Gmµ (4 ≤ m ≤ 9) of the metric, and 6
arise from the components Bmµ of the anti-symmetric tensor field. Invariance
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of the equations of motion of the low energy effective field theory forces us
into the following transformation laws of the gauge fields. Under T -duality,

F (a)
µν → ΩabF

(b)
µν , (9)

where F (a)
µν denotes the field strength. On the other hand, under S-duality,

F (a)
µν → (rλ1 + s)F (a)

µν + rλ2(ML)abF̃
(b)
µν , (10)

where F̃ denotes the dual field strength. From eq.(9) we see that T duality
transformation does not mix electric fields with magnetic fields. This means
that if we start with an elementary string excitation which carries electric
charge but no magnetic charge, then the transformed state will also carry
only electric charge. Thus the transformed state may be identified as an-
other elementary string state. On the other hand, S-duality transformation
does mix electric fields with magnetic fields. As a result if we start with an
electrically charged elementary string state, then under S-duality transfor-
mation it goes into a state that carries both electric and magnetic charges
in general. Such states must necessarily be identified as soliton states in the
theory. Thus we see that S-duality transformation mixes elementary string
states with solitons. This is another indication that S-duality transformation
does not hold order by order in perturbation theory.

¿From this it would seem that it is almost impossible to design any test
of S-duality, since we do not know how to calculate non-perturbative effects
in string theory. Fortunately, due to the existence of an extended N = 4
supersymmetry in the theory under consideration, there are certain non-
renormalization theorems which guarantee that for some of the quantities in
this theory the tree level result is exact. This provides us with a laboratory
for testing S-duality, since these quantities must be invariant under S-duality
transformation. I shall not go into the details of these tests, but only mention
here that conjectured S-duality in four dimensions have so far passed all such
tests1. Instead I shall now assume that S-duality is a valid symmetry of the
four dimensional theory, and see what we can learn about lower dimensional
theories starting from this assumption.

The general strategy that we shall use for this study is the following.

• We shall assume that S-duality is a symmetry of the four dimensional
string theory, and that it does not get broken when we compactify one
or more directions on a circle.
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• We then combine the S-duality transformation of the original four
dimensional theory with the known T -duality transformations of the
lower dimensional theory, and find the minimal symmetry group that
contains both. This can then be identified as the duality symmetry
group of the lower dimensional theory.

We start our analysis for D = 3, i.e. heterotic string theory compactified
on a seven dimensional torus2. In this case the scalar moduli fields will be
30× 30 matrix valued scalar fields M̄ satisfying the relations:

M̄T = M̄ , M̄T L̄M̄ = L̄ , (11)

where L̄ is a 30× 30 matrix of the form:

L̄ =


σ1

·
·
σ1

−I16

 σ1 =
(

1
1

)
. (12)

The independent components of the matrix valued scalar field M̄ are in
one to one correspondence with the internal components of the metric, anti-
symmetric tensor field, and gauge fields in the Cartan subalgebra of the E8×
E8 gauge group. The other massless scalar field in this theory is the dilaton
Φ̄. The theory also contains 30 massless U(1) gauge fields Ā

(ā)
µ̄ (1 ≤ ā ≤ 30,

0 ≤ µ̄ ≤ 2), 16 of which come from the gauge fields in the Cartan subalgebra
of E8 ×E8, 7 come from the components Gm̄µ̄ of the ten dimensional metric
(3 ≤ m̄ ≤ 9), and 7 come from the components Bm̄µ̄ of the anti-symmetric
tensor field. Since in three dimensions vector fields are dual to scalar fields,
we can in fact trade in the 30 gauge fields for 30 scalar fields ψ(ā).5 The set
of scalar fields M̄ , Φ̄ and ψ(ā) can now be combined into a 32 × 32 matrix
valued scalar field M, defined as,

M =



e−2Φ̄ + ψT L̄M̄L̄ψ −1
2
e2Φ̄ψT L̄ψ ψT L̄M̄

+1
4
e2Φ̄(ψT L̄ψ)2 +1

2
e2Φ̄ψT (ψT L̄ψ)

−1
2
e2Φ̄ψT L̄ψ e2Φ̄ −e2Φ̄ψT

M̄L̄ψ −e2Φ̄ψ M̄ + e2Φ̄ψψT

+1
2
e2Φ̄ψ(ψT L̄ψ)


. (13)
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M satisfies
MT = M , MT L̃M = L̃ , (14)

where L̃ is a 32× 32 matrix:

L̃ =


σ1

·
·
σ1

−I16

 σ1 =
(

1
1

)
. (15)

One can easily check that M has the same number of degrees of freedom as
the set of scalar fields {M̄, Φ̄, ψ(ā)}. In particular M has 8 × 24 degrees of
freedom, M̄ has 7× 23, Φ̄ has 1 and ψ(ā) has 30 degrees of freedom.

Let us now investigate the duality symmetries of this theory. The target
space duality transformation on the three dimensional fields take the form:

M̄ → Ω̄M̄Ω̄T , ψ(ā) → Ω̄āb̄ψ
(b̄) , (16)

where Ω̄ ∈ O(7, 23;Z) is a 30× 30 matrix satisfying the relations

Ω̄L̄Ω̄T = L̄ , (17)

and that Ω̄ preserves a 30 dimensional even, self-dual, Lorentzian lattice Λ30.
For definiteness we shall take this lattice to be spanned by the vectors

m1

·
·

m14
~k

 , mi ∈ Z, ~k ∈ E8 × E8 . (18)

The action of this transformation on the matrix M is given by

M→ Ω̃MΩ̃T , (19)

where

Ω̃ =
(
I2

Ω̄

)
. (20)

Let us now turn to the S-duality transformations. Using the relationship
between the fields M̄ , Φ̄ and ψ(ā) of the three dimensional theory, and the
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fields M , λ and A(a)
µ of the four dimensional theory, one can study the effect

of the S-duality transformation on the ‘three dimensional fields’. It can be
shown that this transformation acts as,

M→ Ω̂MΩ̂T , (21)

where

Ω̂ =


p 0 0 −q
0 s r 0
0 q p 0
−r 0 0 s

I28

 , (22)

where p, q, r, s are the same integers appearing in eq.(8).
Examining eqs.(19)-(22) we see that the three dimensional T -duality

transformations do not commute with the four dimensional S-duality trans-
formations. Thus when we combine these two sets of transformations, we
generate a much bigger symmetry group. In this case the symmetry group
turns out to be O(8, 24;Z). Under a general element of the group M trans-
forms as

M→ ΩMΩT , (23)

where Ω ∈ O(8, 24;Z) is a 32× 32 matrix, satisfying

ΩL̃ΩT = L̃ , (24)

and that Ω preserves a 32 dimensional lattice Λ32 spanned by vectors of the
form 

m1

·
·

m16
~k

 , mi ∈ Z, ~k ∈ E8 × E8 . (25)

Let us now turn to the study of duality symmetries in the two dimensional
theory obtained by compactifying the heterotic string theory on an eight
dimensional torus3. (For related work, see ref.6.) The moduli fields in this
case are given by 32× 32 matrices M̃ satisfying

M̃T = M̃, M̃T L̃M̃ = L̃ . (26)
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M̃ contains information about the internal components of the metric, anti-
symmetric tensor field, and gauge fields. The T -duality group in this case is
O(8, 24;Z), and acts naturally on M̃ :

M̃ → Ω̃M̃Ω̃T , (27)

where Ω̃ is an O(8, 24;Z) matrix defined above. S-duality transformations of
the four dimensional theory, on the other hand, do not act naturally on M̃ ,
but on the variables dual to M̃ . As a result, there is a “conflict of interest”
in trying to represent S- and T - duality transformations at the same time
as local transformations on fields. To see an example of this, let us consider
the two dimensional theory to be a result of compactifying the 2 and 3
directions of a four dimensional theory. Then the S-duality transformation
acts naturally on the axion field obtained by dualizing the scalar field B23 in
two dimensions. On the other hand, T -duality transformation acts naturally
on the scalar field B23 itself.

Fortunately a solution to this problem has already been given in the
literature7. Instead of working with the variable M̃ we work with a new
variable V̂ which is a O(8, 24) valued function of the coordinate x and a
real parameter v.∗We shall not give the construction of V̂ in detail here; for
details see 3. Suffice it to say that V̂ contains the same degrees of freedom as
M̃ except for extra zero modes of dual potentials constructed from M̃ . Thus
for a given V̂ we can determine M̃ completely. The advantage of using the
variable V̂ instead on M̃ is that the action of both, the S and the T duality
transformations are simple on V̂ . In particular, both the transformations can
be represented as follows:

V̂(x; v) → g(v)V̂(x; v)h(x; v) , (28)

where g(v) is an O(8, 24) valued function of the real variable v, and h(x, v)
is an O(8, 24) valued function of x and v determined in terms of g(v) and
V̂(x, v). Thus all the duality transformations can be labelled by the elements
g(v). The T duality transformations correspond to constant g(v):

g(v) = U , U ∈ O(8, 24;Z) . (29)

∗The variable v corresponds to the spectral parameter that appears during the process of
linearizing the equations of motion of M̃ .
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On the other hand, S-duality transformations in the four dimensional theory
corresponding to the non-compact directions 0− 3 correspond to the choice

g(v) =


p 0 0 −qv
0 s rv−1 0
0 qv p 0

−rv−1 0 0 s
I28

 , (30)

where p, q, r, s are integers satisfying ps− qr = 1.

Let us denote by ̂O(8, 24) the infinite dimensional group represented by
the set of all O(8, 24) valued functions g(v). Then, both the S- and the

T - duality transformations correspond to appropriate subgroups of ̂O(8, 24).
The minimal duality group G of the two dimensional theory will be the

subgroup of ̂O(8, 24) generated by the S- and T - duality transformations.
Some relevant subgroups of G are as follows.

• As already pointed out, the T -duality group of the two dimensional the-
ory is generated by constant functions g(v) = U where U ∈ O(8, 24;Z).

• Consider the three dimensional theory obtained by compactifying the
directions 3 − 9. Then according to our previous analysis, this theory
has a duality group O(8, 24;Z). This corresponds to the subgroup of
G containing the elements g(v) = V UV −1, where U ∈ O(8, 24;Z), and

V =

 v
v−1

I30

 . (31)

In order to gain some further insight into the group G let us definêO(8, 24;Z) to be the discrete subgroup of ̂O(8, 24) generated by O(8, 24)
valued functions g(v) satisfying the constraint that it admits an expansion
of the form:

g(v) =
∞∑

n=−∞
gnv

−n , (32)

with
gnΛ32 ⊂ Λ32 ∀n . (33)

9



The matrices g(v) representing the S- and T - duality transformations clearly
satisfy this criteria. Thus we see that

G ⊂ ̂O(8, 24;Z) . (34)

It is tempting to conjecture that G is the full group ̂O(8, 24;Z). However,
one can easily rule out this possibility by explicitly constructing examples of̂O(8, 24;Z) elements that are not in G. The examples of such elements are

g(v) =

 v
v−1

I30

 . (35)

The way to see that the above element is not in G is to note that all the
generators of G satisfy the criteria that g(v = 1)g−1(v = −1) is an element
of O(8, 24) that is continuously connected to the identity element. This is

not true for the above element of ̂O(8, 24;Z).

Even though ̂O(8, 24;Z) elements of the form given in eq.(35) are not
included in G, it is tempting to speculate that the full duality group in two

dimension is ̂O(8, 24;Z). This would imply that this duality group includes
new elements like (35) that are not generated by known S- and T -duality
transformations in higher dimensions.

Thus we see that heterotic string theory, compactified on a torus of di-
mension ≥ 6, appears to have extra symmetries which are not visible in per-
turbation theory. This extra symmetry gets larger as we compactify more
directions. The natural next step in this investigation would be to compactify
one more dimension to get a one dimensional theory; or even to compactify
two more dimensions by working in Euclidean space-time.

I wish to thank John H. Schwarz for many useful discussions, and for
collaboration in part of the work reviewed in 1. I also thank the organisers of
the conference for hospitality during the extremely stimulating conference.
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