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ABSTRACT

A microscopic formulation of Haldane’s exclusions statistics is given in terms

of a priori occupation probabilities of states. It is shown that negative prob-
abilities are always necessary to reproduce fractional statistics. Based on this

formulation, a path-integral realization for systems with exclusion statistics is

derived. This has the advantage of being generalizable to interacting systems,
and can be used as the starting point for further generalizations of statistics.

As a byproduct, the vanishing of the heat capacity at zero temperature for
exclusion statistics systems is proved.

1. Introduction

Statistics is an inherently quantum mechanical property of identical particles
which, as the name suggests, modifies the statistical mechanical properties of large
collections of such particles. It enters through symmetry properties of the wavefunc-
tions of many-body states, and this was the starting point, until some time ago, for
various generalizations away from the standard bosonic and fermionic cases, such
as parastatistics and anyons. Haldane, however, taking the term statistics more
literally, defined a generalized exclusion statistics through the reduction of the
Hilbert space of additional particles in a system due to the ones already present in
the system [1]. He proposed then the definition

g = − ∆d

∆N
(1)

where N is the number of particles in the system, d is the dimensionality of the
single-particle Hilbert space, obtained by holding the quantum numbers of N − 1
particles fixed, and ∆d and ∆N are their variation keeping the size and boundary
conditions of the system fixed. g = 0 corresponds to bosons (no exclusion) while
g = 1 corresponds to fermions, excluding a single state for the remaining particles,
the one they occupy.
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On the basis of (1), Haldane proposed the combinatorial formula for the number
of many-body states of N particles occupying a group of K states

M =
[K − (g − 1)(N − 1)]!

N ![K − g(N − 1)− 1]!
(2)

Based on the above, Wu derived the thermodynamical properties of particles with
exclusion statistics [2] (see also [3,4]), and this system has received a lot of recent
attention [5,6,7]. Appropriate generalizations for several species of identical particles
also exist.

2. Probabilities

It is obvious from (1) and (2) that exclusions statistics makes sense only in a
statistical sence, since ∆d and M can become fractional for ∆N = 1 or N = 1.
It is, nevertheless, useful to attempt a microscopic realization and interpretation
of fractional exclusion statistics, and see what it implies for the one-particle states,
and this is what will be done in this paper. Such a description has the obvious
advantage of being generalizable to interacting particles, for which the notion of
d becomes hard to define.

The starting point will be the grand partition function for exclusion-statistics
particles (“g-ons,” as called in [6]) in K states

Z(K) =
∞∑

N=0

M(K, N)xN (3)

where we put x = exp(µ−ε)/kT with µ the chemical potential and assumed that
all K states are at the same energy ε. In the statistical limit of large K , Z(K)
should be extensive. This introduces, then, the notion of a microscopic description
of the system in which the above Z is the K-th power of a single-state partition
function. Each single level can be occupied by any number of particles, but with an
a priori probability Pn for each occupancy n independent of the temperature.
We thus demand

Z(K, x) =

(∑
n

Pn(K)xn

)K

=
∞∑

N=0

M(K, N)xN (4)

for all x. The above probabilities must, in general, depend on K in order to satisfy



(4). This reflects the fact that g-ons are not well-defined for microscopic systems
(see also the remarks in [6]). If, however, Pn(K) assume some (finite) asymptotic
values as K goes to infinity (as they should for an extensive Z), then the above
microscopic partition function becomes an accurate description in the statistical
limit. To calculate Pn in this limit, we first notice that the combinatorial formula
(2) counts (at least for integer g) the ways of placing N identical particles in
K sites arranged into a one-dimensional open lattice, under the restriction that
any two particles be at least g sites apart. Clearly, for large K , the “boundary
condition” that the lattice is open cannot influence the statistical mechanics of the
system. We choose, then, to examine instead particles placed on a periodic lattice
under the same restriction. This modifies the combinatorics into

M ′ =
K[K − (g − 1)N − 1]!

N !(K − gN)!
(5)

Clearly (5) reproduces the standard bosonic and fermionic results for g = 0, 1.
Repeating the analysis of [2], it can be verified that M ′ leads indeed to the same
statistical mechanics as M . It is now pointed out that the Pn defined in terms of
M ′ are independent of K . (Proof: Putting Pn(K) = Pn + O(1/K), where
Pn are the asymptotic values at K = ∞, and equating terms of n-th order in x
we obtain

KPn(K) + K(K − 1)Pn−1(K)P1(K) + · · · = M ′(K, n) (6)

Assuming that all Pm(K) for m < n are independent of K , all the terms in
(6) other than KPn(K) are polynomials in K without constant term, and so
is M ′(K, n). Therefore Pn(K) cannot contain any terms of O(1/K). Since
P1 = 1, we inductively showed that all Pn are K-independent.) Therefore, Pn

can be calculated from M ′(1, n), and we obtain

Pn =
n∏

m=2

(
1− gn

m

)
(7)

It can be a posteriori checked that the expressions for Pn(K) obtained from M

converge to (7) for K = ∞. The above Pn for n = 0, . . . , 5 and g = 1
2 agree

with the values calculated in [6] using a different approach.



The most obvious feature of the above expressions is that, unless g = 0, 1, they
always become negative for some values of n. Therefore, their interpretation as
probabilities is problematic. This is an inherent problem of fractional g-on statistics
which cannot be rectified by, e.g., truncating M(K, N) to zero for N > K/g.
The description of the statistical system in terms of effective negative microscopic
probabilities is, nevertheless, accurate and useful. Note, also, that the above Pn
never truncate to zero for n above some maximal value (unless g = 1), unlike
parafermions.

3. Partition function

¿From the above, the single-level partition function Z(x) ≡ Z can be shown
to satisfy

Zg − Zg−1 = x (8)

This is a transcedental equation which in principle determines Z and whose power-
series solution reproduces the Pn as coefficients. The average occupation number
n̄ is expressed as

n̄ =
1

Z
x∂xZ = x∂xW (9)

where W = ln Z is the free energy (over−kT ). It can be shown that (9) together
with (8) imply for n̄

(1− gn̄)g[1− (g − 1)n̄]1−g = n̄x−1 (10)

in accordance with the result of [2,3,4].

The free energy W can be expressed as a power series in x

W =
∞∑

n=1

wn

n
xn (11)

in terms of the “connected” weights

w1 = P1 , w2 = 2P2 − P 2
1 , w3 = 3P3 − 3P1P2 + P 3

1 (12)



etc. We find for wn:

wn =
n−1∏
m=1

(
1− gn

m

)
(13)

These are remarkably similar to Pn (except for the range of m). Notice that the
wn are not probabilities, but rather cluster coefficients. In fact, wn = 1 for bosons
and wn = (−)n−1 for fermions. Also, w2 = 1− 2g [5].

One immediate consequence of the above relations is the vanishing of the zero-
temperature heat capacity of a g-on system C0, defined as

C0 =

∞∫
0

(ε− µ)dβ[n̄(β) + n̄(−β)− 1

g
] (14)

where β = 1/kT , and 1/g is the saturation density for n at zero temperature and
ε < µ. Using (9) we can express C0 as

C0 = W (x = Λ)− 1

g
ln Λ−W (x = 0) (15)

where Λ is a cutoff to be taken to infinity. ¿From (8) we can deduce that W (x =

0) = 0 and W (x = Λ) = 1
g ln Λ +O(Λ−1/g). Therefore C0 = 0 for all g, as

conjectured in [6]. This expresses the fact that the ground state of the many-body
g-on system is nondegenerate. This is expected as a generic feature of particle
systems, but is explicitly verified here for g-ons.

4. Duality

It is easy to derive a duality relation for Z :

Z−1(g, x−g) + Z−1(
1

g
, x) = 1 (16)

¿From the above relation and (8), (9), the duality relation for the density is recov-



ered [4,6]

gn̄(g, x) +
1

g
n̄(

1

g
, x−1/g) = 1 (17)

We regard the formula (16) as more fundamental since it seems to be more generic.
For instance, parafermions of order p = 1/g are defined such that at most p
particles can be put per state with probabilities 1. Thus

Zpar = 1 + x + · · ·xp =
1− xp+1

1− x
(18)

from which we can write the generalized parafermionic partition function Zpar(g, x)
by simply putting p = 1/g above. It can be seen that Zpar also satisfies (16),
but not (17).

5. Path Integral Representation

¿From the expressions (13) for wn we can find a path integral representation
for the partition function of g-ons in an arbitrary external potential. We start from
the usual euclidean path integral with periodic time β for N particles with ac-
tion the sum of N one-particle actions, and sum over all particle numbers N with
appropriate chemical potential weights. Since the particles are identical, we must
also sum over paths where particles have exchanged final positions, with weights
equal to the inverse symmetry factors of the permutation to avoid overcounting
(compare with Feynman diagrams). Thus the path integral for each N decom-
poses into sectors labeled by the elements of the permutation group Perm(N).
By the usual argument, the free energy will be given by the sum of all connected
path integrals. It is obvious that these are the ones where the final positions of the
particles are a cyclic permutation of the original ones (since these are the only ele-
ments of Perm(N) that cannot be written as a product of commuting elements).
These have a symmetry factor of 1/N corresponding to cyclic relabelings of par-
ticle coordinates (compare with the factors of 1/n included in (11)). They really
correspond to one particle wrapping N times around euclidean time. Thus, if we
weight these configurations with the extra factors wN , as we have the right to do
since they belong to topologically distinct sectors, we will reproduce the free energy



of a distribution of g-ons on the energy levels of the one-body problem, that is

W(β, µ) =
∞∑

N=1

eµN 1

N

∫
wN

N∏
n=1

Dxn(tn)e−SE [xn(tn)] (19)

where SE is the one-particle euclidean action and the paths obey the boundary con-
ditions xn(β) = xn+1(0), xN (β) = x0(0). (x can be in arbitrary dimensions.)
The partition function will be the path integral over all disconnected components,
with appropriate symmetry factors and a factor of wn for each disconnected n-
particle component.

It is clear that the above path integral is not unitary, since the weights wn are
not phases, nor does it respect cluster decomposition, since the wn do not provide
true representations of the permutation group (unlike the g = 0, 1 cases). This is
again a manifestation of the non-microscopic nature of exclusion statistics. It does
make sense, nevertheless, at the statistical limit.

6. Other generalizations of statistics

The above path-integral realization can be extended to other statistics. E.g., for
parafermions of order p (with p integer) the corresponding weigts wn are

wn = −p for n = 0 mod(p + 1) , 1 otherwise. (20)

This representation is more economical than the one calling for p distinct flavors of
fermions and projecting all states transforming in an irreducible representation of
Perm(p) into a unique quantum state. The origin of the apparent non-unitarity
and breakdown of cluster decomposition in the above integral for parafermions is
clear: it is due to the above projection, which must be inserted in the (unitary)
many-flavor path integral.

The possibility to define statistics throught the choice of the coefficients wn
suggests other possible generalizations. Perhaps the simplest one is to choose

wn = (−α)n−1 (21)

that is, one factor of −α for each unavoidable particle crossing. This leads to the



statistical distribution for the average occupation number n̄

n̄ =
1

e(ε−µ)β + α
(22)

which is the simplest imaginable generalization of the Fermi and Bose distribution.
The combinatorial formula for putting N particles in K states for the above α-
statistics is

M = αN (K
α )!

N !(K
α −N)!

=
K(K − α)(K − 2α) · · · (K − (N − 1)α)

N !

(23)
This can be thought as a different realization of the exclusion statistics idea: the
first particle put in the system has K states to choose, the next has K −α due to
the presence of the previous one an so on, and dividing by N ! avoids overcounting.
Fermions and bosons correspond to α = 1 and α = −1 respectively, while α = 0
corresponds to Boltzmann statistics (as is also clear from the path integral, in which
no configurations where particles have exchanged positions are allowed, but factors
of 1/N ! are still included). The corresponding single-level probabilities are

Pn =
n−1∏
m=1

1−mα

1 + m
(24)

For α = 1/p with p integer (a fraction of a fermion), the above probabilities are
all positive for n up to p and vanish beyond that. For α < 0 all probabilities
are positive and nonzero. Thus, the above system has a bosonic (α < 0) and
a fermionic (α > 0) sector, with Boltzmann statistics as the separator. It is a
plausible alternative definition of exclusion statistics, due to (23), and has many
appealing features, not shared by the standard (Haldane) exclusion statistics, such
as positive probabilities, a maximum single-level occupancy in accordance with the
fraction of a fermion that α represents, and analytic expressions for all thermody-
namic quantities. It would be interesting to find a physical system in which these
statistics are realized.

7.Conclusions

We conclude by pointing out that, once we have the path integral (19) we can
easily extend the notion of exclusion statistics to interacting particles: we simply



replace the action
∑

n SE [xn] by the full interacting N -particle action, thus cir-
cumventing all difficulties with combinatorial formulae. In the interacting case one
has to work with the full partition function, rather than the free energy (19), since
topologically disconnected diagrams are still dynamically connected through the
interactions and do not factorize. Applications of the above on physical systems,
as well as possible generalizations to the many-flavor mutual-statistics case are left
for future work.
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