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ABSTRACT

We study the low-energy effective Lagrangian of N = 2 heterotic string vacua
at the classical and quantum level. The couplings of the vector multiplets are
uniquely determined at the tree level, while the loop corrections are severely
constrained by the exact discrete symmetries of the string vacuum. We evaluate
the general transformation law of the perturbative prepotential and determine its
form for the toroidal compactifications of six-dimensional N = 1 supersymmetric
vacua.

1. Introduction

During the last months rigid N = 2 Yang-Mills gauge theories had been attract-
ing a lot of interest; this developement was stimulated by Seiberg and Witten 1 who
were able to solve non-perturbatively N = 2 supersymmetric Yang-Mills theory with
a gauge group SU(2) using the analytic properties of the N = 2 couplings in terms of
the Higgs field. It is of interest to consider the analysis of Seiberg and Witten and its
generalizations to larger gauge groups 2 in the context of Yang-Mills gauge theories
coupled to N = 2 supergravity and in the context of N = 2 string theories. In this
way one hopes to extract important informations about strong coupling phenomena
in (N = 2) string theory and in particular about S-duality 3 which has been quite es-
tablished for N = 4 heterotic string compactifications. In this talk we report on some
work 4 about duality symmetries and the computation of perturbative couplings for
N = 2 heterotic string theories. Related results along these lines were independently
obtained in 5,6. Very recently, also non-perturbative results were derived for N = 2
heterotic strings, based on a remarkable string-string duality between N = 2 het-
erotic versus type II strings 7 and also by discussing non-perturbative monodromies
ala Seiberg and Witten 8.

Let us briefly recall how field dependend couplings arise in (supersymmetric)
gauge theories 9. Consider the spontaneous symmetry breakdown of a gauge group
G (SU(2)) down to some subgroup H (U(1)) by a vacuum expectation value (vev)
of a Higgs field a. At the one loop level one obtains the typical threshold behaviour
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g−2
H (a) = g−2

tree + bH−bG

16π2 log a2, where the bG,H are the corresponding β-function co-
efficients; in the rigid case the tree level coupling g−2

tree is usually field-independent.
Clearly, the logarithmic singularity in the one-loop threshold function is due to states
(gauge bosons) which become massless in the limit a = 0. In N = 2 Yang-Mills
theories the gauge couplings are determined by an holomorphic prepotential F (a):

g−2 = i Im
(

∂2F (a)
∂a2

)
; the associated θ-angle reads θ = Re

(
∂2F (a)

∂a2

)
. Now a denotes a

N = 2 vector multiplet, respectively its complex scalar component. It is easy to inte-
grate the above threshold formula deriving that F (a)1−loop = a2 + a2(log a2 − const).
The field a is not a gauge invariant quantity and the classical Z2 Weyl reflection,
a → −a for G = SU(2), induces the following symplectic transformation on the pe-

riods a and its dual aD = ∂F
∂a

:
(

a
aD

)
→

(−1 0
2 −1

) (
a
aD

)
. This is the semiclassical

monodromy corresponding to singularities due to massless gauge bosons at a = 0.
For N = 2 heterotic strings this scenario will be modified by gravitational and

stringy effects. Besides the rigid (non-Abelian) gauge symmetries there will be two
genuine U(1) gauge groups associated to the graviphoton and to the supersymmetric
spin one partner of the axion/dilaton field, denoted by S. The role of the Higgs
fields, which break the non-Abelian gauge symmetries, is played by the moduli fields
Φα of the N = 2 string vacua. The classical Weyl transformations on the Higgs
fields are embedded into the perturbative target space duality symmetries acting
on the moduli fields. According to the superconformal multiplet calculus of N = 2
supergravity the couplings of the N = 2 vector multiplets follow from an homogeneous
prepotential F(S, Φα). F only gets perturbative contributions up to one loop plus
non-perturbative contributions: F(S, Φα) = F (0)(S, Φα) + F (1)(Φα) + FNP(S, Φα).
The one-loop piece will be again multi-valued due to singularities of states which
become massless at the points of enhanced gauge symmetries in the moduli space.
Non-perturbatively, there will be singularities related to gauge configurations like
monopoles and dyons; in addition one expects singularities due to non-pertutbative
gravitational and/or stringy effects like massless black hole formation etc. at some
points in the quantum moduli space. In this talk we entirely focus on the perturbative
aspects of N = 2 string vacua.

To get a qualitative understanding about the form of the one-loop gauge couplings
consider the simple case of one modulus T , where the target space duality group acting
on T is given by PSL(2,Z). The corresponding U(1) gauge symmetry is enhanced
to SU(2) for T = 1. The Higgs field a is just the uniformazing variable a = T−1

T+1
10,8 and the duality transformation T → 1/T acts as a Weyl reflection a → −a on
the Higgs field. Thus we expect that in the vicinity of the critical point a the U(1)
gauge couplings behaves as g−2 ∼ log a2. In order to get the proper transformation
behaviour under the full target space duality group PSL(2,Z), the gauge coupling will
be given by an expression of the form g−2 ∼ log(j(iT )− j(i)) which reproduces log a2

for small a. We will explain how such kind of expression, which was obtained in 11 as



a socalled free energy, is related to the second derivative of the one-loop holomorphic
prepotential. Since F (1) is multi-valued due to logarithmic singulairities, the target
space duality transformation induces non-trivial one-loop monodromies.

2. Vector Couplings in N = 2 Supergravity

In N = 2 supersymmetric Yang-Mills theory the action is encoded in a holomorphic
prepotential F (X), where XA (A = 1, . . . , n) denote the vector superfields and also
the complex scalar components of such superfields. The local N = 2 supersymmetry
requires an additional vector superfield X0 in order to accomodate the graviphoton,
but the scalar and the spinor components of this superfield do not lead to additional
physical particles. Therefore, in the local case F (X) is a holomorphic function of
n + 1 complex variables XI (I = 0, 1, . . . , n), but it must be a homogeneous function
of degree two 12. According to the superconformal multiplet calculus, the physical
scalar fields of this system parameterize an n-dimensional complex hypersurface. The
embedding of this hypersurface can be described in terms of n complex coordinates zA

by letting XI be proportional to some holomorphic sections XI(z) of the projective
space. The resulting geometry for the space of physical scalar fields belonging to
vector multiplets of an N = 2 supergravity is a special Kähler geometry 12,13, with a
Kähler potential of the special forma

K(z, z̄) = − log
(
iX̄I(z̄) FI(X(z))− iXI(z) F̄I(X̄(z̄))

)
. (1)

A convenient choice of inhomogeneous coordinates zA are the special coordinates,
defined b zA = XA/X0, A = 1, . . . , n, or, equivalently, X0(z) = 1, XA(z) = zA. In
this parameterization the Kähler potential can be written as

K(z, z̄) = − log
(
2(F + F̄)− (zA − z̄A)(FA − F̄A)

)
, (2)

where F(z) = i(X0)−2F (X).
The Lagrangian terms containing the kinetic energies of the gauge fields are

Lgauge = − i
8

(
NIJ F+I

µν F+µνJ − N̄IJ F−I
µν F−µνJ

)
, (3)

where F±I
µν denote the selfdual and anti-selfdual field-strength components and

NIJ = F̄IJ + 2i
Im(FIK) Im(FJL) XKXL

Im(FKL) XKXL
. (4)

Hence N is the field-dependent tensor that comprises the inverse gauge couplings
g−2

IJ = i
4
(NIJ − N̄IJ) and the generalized θ angles θIJ = 2π2(NIJ + N̄IJ). Note the

important identity FI = NIJ XJ .

aHere and henceforth we use the standard convention where FIJ··· denote multiple derivatives with
respect to X of the holomorphic prepotential.



It is important to realize that, different functions F (X) can lead to equivalent
equations of motion. Such equivalence often involves the electric-magnetic duality
of the field strengths rather than local transformations of the vector potentials AI

µ.
Following refs. 12,14,15, we define the tensors G±

µνI as G+
µνI = NIJF+J

µν , G−
µνI = N̄IJF−J

µν .
Then the set of Bianchi identities and equations of motion for the Abelian gauge fields
can be written as ∂µ(F+I

µν −F−I
µν ) = 0, ∂µ(G+

µνI−G−
µνI) = 0, which are invariant under

the transformations

F+I
µν −→ F̃+I

µν = U I
J F+J

µν + ZIJ G+
µνJ .

G+
µνI −→ G̃+

µνI = VI
J G+

µνJ + WIJ F+J
µν ,

(5)

where U , V , W and Z are constant, real, (n + 1) × (n + 1) matrices. However, the
transformation eq.(5) must be a symplectic Sp(2n + 2,R) transformation, that is

UTV −WTZ = V TU − ZTW = 1 ,

UTW = WTU , ZTV = V TZ .
(6)

Next, consider the transformation rules for the scalar fields. N = 2 supersymmetry
relates the XI to the field strengths F+I

µν , while the FI are related to the G+µν
I . The

Sp(2n + 2,R) act on the scalar fields as

X̃I = U I
J XJ + ZIJ FJ ,

F̃ I = VI
J FJ + WIJ XJ , (7)

Owing to the symplectic conditions eqs.(6), the quantities F̃I can be written as the
derivative of a new function F̃ (X̃) with respect to the new coordinate X̃I . Checking
whether a particular symplectic transformations corresponds to a symmetry transfor-
mation on has to demand that substituting X̃ for X in FI(X) induces precisely the
symplectic transformation specified in the second formula of eq.(7).

The transformation rule for the tensor N is precisely as in the rigid case, namely
ÑIJ = (VI

KNKL + WIL)[(U + ZN )−1]LJ . Three particular subgroups of the Sp(2n +
2,R) will be relevant to our following discussion The first subgroup contains the
classical target-space duality transformations which are symmetries of the tree-level
Lagrangian. One can easily see that the Lagrangian is left invariant by the subgroup
that satisfies W = Z = 0 and V T = U−1. For the second subgroup, we continue to
demand Z = 0 but relax the W = 0 condition; according to eq. (6), we then should
have V T = U−1 and WTU should be a symmetric matrix. These conditions lead to
semiclassical transformations of the form

X̃I = U I
J XJ ,

F̃±I
µν = U I

J F±J
µν ,

F̃I = [U−1]J I FJ + WIJXJ ,

Ñ = [U−1]TNU−1 + WU−1 ,
(8)

which can always be implemented as Lagrangian symmetries of the vector fields AI
µ.

The last term in the last equation in (8) amounts to a constant shift of the theta



angles; at the quantum level, such shifts are quantized and hence the symplectic
group must be restricted to Sp(2n + 2,Z). We will see that such shifts in the θ-angle
do occur whenever the one-loop gauge couplings have logarithmic singularities at
special points in the moduli space where massive modes become massless. Therefore,
these symmetries are related to the semi-classical (one-loop) monodromies around
such singular points. The third subgroup contains elements that interchange the
field-strength tensors F I

µν and GµνI and correspond to electric-magnetic dualities.
These transformations are defined by U = V = 0 and WT = −Z−1, which yields
Ñ = −W N−1 WT, so that they give rise to an inversion of the gauge couplings
and hence must be non-perturbative in nature. In the heterotic string context, such
transformations are often called S-dualities because of the way they act upon the
dilaton field S.

3. N = 2 Heterotic Strings

3.1. Spectrum in case of toroidal compactification

For a heterotic string vacuum with N = 2 space-time supersymmetry the algebra
implies that the internal right-moving c = 9 SCFT contains a free complex N = 1 su-
perfield whose bosonic components we denote by ∂X±(z). The massless spectrum of a
heterotic N = 2 vacuum always comprises the graviton (Gµν), the antisymmetric ten-
sor (Bµν) and the dilaton (D), created by vertex operators of the form ∂̄Xµ(z̄) ∂Xν(z)
(at zero momentum), and two gravitini and two dilatini, created by vertex operators
∂̄Xµ(z̄) V i

α(z). In addition, there are always two Abelian gauge bosons A±
µ with ver-

tex operators ∂̄Xµ(z̄) ∂X±(z), which generate the gauge group [U(1)R]2 (the suffix R
indicates that these groups originate from the dimension-one operators ∂X±(z) of the
right-moving sector). One linear combination is the graviphoton, which is the spin-1
gauge boson of the N = 2 supergravity multiplet that also contains the graviton and
two gravitini. The dilaton together with the antisymmetric tensor Bµν , the two dila-
tini and the remaining U(1) vector are naturally described by an N = 2 vector-tensor
multiplet 16,4. In a dual description, where the antisymmetric tensor is replaced by a
pseudo-scalar (axion) a, the degrees of freedom form a N = 2 vector supermultiplet
where the dilaton and the axion combine into a complex scalar S = eD + ia.

Apart from the two Abelian gauge bosons we just discussed, the massless spectrum
of heterotic string vacua contain further gauge bosons Aa

µ, which are always members
of N = 2 vector multiplets. Their superpartners are two gaugini λa

i α and a complex
scalar Ca and the vertex operators for a generic vector multiplet are given by(

Aa
µ, λ

a
i α, Ca

)
∼

(
Ja(z̄) ∂Xµ(z), Ja(z̄) Vi α(z), Ja(z̄) ∂X±(z)

)
, (9)

where Ja(z̄) are dimension (1, 0) operators that together comprise a left-moving Kač-
Moody current algebra. Their zero modes generate a non-Abelian gauge group G.



The scalar fields in the Cartan subalgebras of non-Abelian factors G(a) ⊂ G as well
as the scalars of any Abelian factor in G correspond to flat directions of the N = 2
scalar potential. Their vertex operators are truly marginal operators of the SCFT and
the corresponding space-time vacuum expectation values are free parameters which
continuously connect a family of string vacua.

¿From now on we focus on the particular subclass of four-dimensional N = 2 het-
erotic vacua, namely compactifications of six-dimensional N = 1 heterotic vacua on
a two-torus T 2. The right-moving coordinates of the torus are given by the operators
∂X±(z) discussed previously, but now there also exist two free complex left-moving
operators ∂̄X±(z̄), which can be used to build vertex operators for the two complex
moduli of the torus ∂̄X±(z̄) ∂X±(z). The moduli of T 2 are commonly denoted by
T = 2(

√
G + iB) and U = (

√
G − iG12)/G11, where Gij is the metric of T 2,

√
G its

determinant and B the constant antisymmetric-tensor background; U describes the
deformations of the complex structure while T parameterizes the deformations of the
area and the antisymmetric tensor, respectively. The moduli space spanned by T and
U is determined by the Narain lattice of T 2 17:

MT,U =
(

SO(2, 2)

SO(2)× SO(2)

)
T,U
'

(
SU(1, 1)

SU(1)

)
T
⊗

(
SU(1, 1)

SU(1)

)
U
. (10)

All physical properties of the two-torus compactifications are invariant under the
group SO(2, 2,Z) of discrete duality transformations 18, which comprise the T ↔ U
exchange and the PSL(2,Z)T × PSL(2,Z)U dualities, which acts on T and U as

T → aT − ib

icT + d
, U → a′U − ib′

ic′U + d′
, (11)

where the parameters a, . . . , d′ are integers and constrained by ad−bc = a′d′−b′c′ = 1.
T and U are the spin-zero components of two additional U(1) N = 2 vector

supermultiplets. The necessary enlargement of the Abelian gauge symmetry is fur-
nished by vertex operators of the form ∂̄X±(z̄) ∂Xµ(z) which generate the gauge
group [U(1)L]2. At special points in the (T, U) moduli space, additional vector fields
become massless and the U(1)2

L becomes enlarged to a non-Abelian gauge symme-
try. In particular, along the critical T = U line, there are two additional massless
gauge fields and the U(1)2

L becomes [SU(2) × U(1)]L. Similar critical lines exist for
T ≡ U (mod SL(2,Z)), i. e., T = (aU − ib)/(icU + d) for some integer a, b, c, d with
ad− bc = 1. When two such lines intersect, each line brings with it a pair of massless
gauge fields and the gauge symmetry becomes enhanced even further; the enhanced
group may be determined by simply counting the intersecting critical lines 11. For ex-
ample, the point T = U = 1 lies at the intersection of two critical lines, namely T = U

and T = 1/U , and hence has four extra gauge bosons. The corresponding gauge sym-
metry is SU(2)2

L. On the other hand, three critical lines T = U , T = 1/(U − i)
and T = (iU + 1)/U intersect at the critical point T = U = ρ = e2πi/12, where one



therefore has six massless gauge bosons in addition to the U(1)2
L; this enhances the

gauge symmetry all the way to an SU(3)L.

3.2. Classical vector couplings

The couplings of the dilaton vector multiplet are independent of the properties
of the internal SCFT and thus universal at the string tree level; in particular, the
dilaton does not mix with any of the other scalar fields in the spectrum of the EQFT.
Furthermore, the axion is subject to a continuous Peccei-Quinn symmetry, which
implies that the Kähler potential is only a function of (S + S̄). Both properties
together imply that the moduli space contains the dilaton field S as the complex
coordinate of a separate SU(1, 1)/U(1) factor. The only special Kähler manifold of
any dimension n > 1 that satisfies this constraint is the symmetric space 19

SU(1, 1)

U(1)
⊗ SO(2, n− 1)

SO(2)× SO(n− 1)
, (12)

with a prepotential (up to symplectic reparametrizations)

F (X) = −X1X2X3

X0
. (13)

The moduli Φ of the previous section are identified with S = −iX1

X0 , T = −iX2

X0 ,

U = −iX3

X0 . The gauge couplings NIJ for for the vector superpartners of the moduli
scalars can be derived in a straightforward way and are given in ref.4. One observes
that all these gauge couplings are non-holomorphic functions of the moduli, which is
a direct consequence of the mixing between the graviphoton and the Abelian vector
superpartners of the moduli scalars. Furthermore, one can easily see that most of
the gauge couplings are proportional to the dilaton’s expectation value and hence the
corresponding gauge couplings become weak in the large-dilaton limit. The exceptions
are NSS, which is proportional to S+ S̄ and the off-diagonal matrix elements NS (T,U),
which are of the order O(1) in the large-dilaton limit. On the other hand, from the
string theory we know that all the physical low-energy couplings become weak in the
large-dilaton limit, which suggests that the strongly-coupled F+S

µν field strength in the
dilaton N = 2 superfield should be replaced with its dual (which is weakly coupled
in the large-dilaton limit). In N = 2 terms, this is achieved by the symplectic
transformation (XI , FJ)→ (X̂I , F̂J) where X̂I = XI for I 6= 1, X̂1 = F1, F̂I = FI for
I 6= 1, F̂1 = −X1. The new coordinates X̂I are, however, not independent, as they

no longer depend on X1. This reflects itself in the constraint ηIJX̂IX̂J def
= X̂1X̂0 +

X̂2X̂3 − X̂ iX̂ i − X̂aX̂a = 0 (the first equality here defines the symmetric matrix
η), which can be easily verified by an explicit calculation. Consequently the matrix
SI

J(X) = ∂X̂I/∂XJ has zero determinant and hence no meaningful prepotential
F̂ (X̂) can be defined 5. Nevertheless, the gauge couplings can be computed in the



new basis. One finds

N̂IJ = −2iS̄ ηIJ + 2i(S + S̄)
ηIK ηJL(ẑK ˆ̄zL + ˆ̄zK ẑL)

ẑKηKLˆ̄zL
, (14)

which has a rather symmetric form in terms of special coordinates ẑP ≡ X̂P /X̂0. In
particular, in the new basis, all the Im N̂IJ are proportional to S + S̄ and hence all
the gauge couplings become weak in the large-dilaton limit.

The basis (X̂I , F̂J) is particularly well suited for the treatment of the the target-
space-duality symmetries of generic N = 2 heterotic string vacua since the classical
Lagrangian is manifestly invariant under symplectic transformations with Ŵ = Ẑ = 0
and Û (and thus V̂ ) belonging to SO(2, 2). Under this symmetry, the periods thus
transform according to X̂I → Û I

J X̂J , F̂I → [Û−1]J I F̂J , while the field strengths and
vector potentials also transform according to the Û matrix. The dilaton field remains
invariant at the classical level. Specifically, the corresponding symplectic matrices (in
the basis (X̂I , F̂I)), for PSL(2,Z)T × PSL(2,Z)U are given by

Û =


d 0 c 0
0 a 0 −b
b 0 a 0
0 −c 0 d

 , V̂ = (ÛT )−1 =


a 0 −b 0
0 d 0 c
−c 0 d 0
0 b 0 a

 , (15)

while Ŵ = Ẑ = 0.

3.3. 1-loop vector couplings

Since the dilaton serves as the loop-counting parameter of the heterotic string the
one-loop prepotential cannot depend on the S-field. For the same reason, any possible
two-loop or higher-loop corrections would have to be proportional to negative powers
of the dilaton and because of the continous Peccei-Quinn symmetry (which persists
to all orders in the perturbation theory), such corrections would have to involve the
negative powers of the (S + S̄) combination rather than just S. On the other hand,
S̄ clearly cannot appear in the holomorphic prepotential F(Φ) and hence in string
theory, all perturbative corrections to the prepotential stop at the one-loop level,
in full analogy to the field-theoretical expansion, which also terminates at the one-
loop order. The one-loop prepotential cannot be arbitrary functions of the moduli,
since they should respect any exact duality symmetry a string vacuum might have.
In the previous section we saw that the tree-level geometry of the moduli space is
invariant under the SO(2, 2) isometry group, and from string theory we know that
transformations belonging to a discrete SO(2, 2,Z) subgroup of this isometry group
are in fact exact symmetries of string vacua to all orders in perturbation theory. The
goal of this and the following sections is to find the precise conditions such exact
symmetries impose on the one-loop prepotential.



We write the holomorphic prepotential for the homogeneous variables XI as

F (X) = H(0)(X) + H(1)(X) , (16)

where H(0)(X) is the tree-level prepotential (13) while H(1)(X) = −i(X0)2 h(1) rep-
resents the one-loop contribution. Both functions are homogeneous of second degree
and H(1) does not depend on X1. However, the most convenient variables for our
purpose are again X̂I and F̂I . (Since the one-loop prepotential H(1) does not depend
on X1, it follows that X̂1 = F1 is not modified by loop corrections.) In terms of the
(X̂I , F̂I) variables, this means that the X̂I should transform exactly as in the classical
theory, without any perturbative corrections. On the other hand, the corresponding
transformation rules for the F̂I become modified at the one-loop level since the La-
grangian is no longer invariant. Instead the transformation rules have to generate
discrete shifts in various θ angles due to monodromies around semi-classical singu-
larities in the moduli space where massive string modes become massless. We have
anticipated this situation in eqs. (8): Instead of the classical transformation rules, in
the quantum theory, (X̂I , F̂I) transform according to

X̂I → Û I
J X̂J , F̂I → V̂I

J F̂J + ŴIJ X̂J , (17)

where V̂ = (ÛT)−1, Ŵ = V̂ Λ, Λ = ΛT and Û belongs to SO(2, 2). Classically, Λ = 0,
but in the quantum theory, Λ is an arbitrary real symmetric matrix, which should
be integer valued so that the ambiguities in the θ angles are discrete (δθ = Ŵ Û−1 =
V̂ ΛV̂ T). In particular, for a closed monodromy around a singularity, X̂I → X̂I i. e.
Û = 1, but Λ 6= 0 and F̂I → F̂I + ΛIJX̂J . We recall that the prepotential itself is in
general not invariant under a symmetry of the equations of motion corresponding to
the effective action, as one can easily verify for the tree-level results of the previous
section, but the period transformation rules are correctly induced by the transfor-
mations of the coordinates. Therefore one obtains the corresponding transformation
rule for H(1),

H(1)(X̃) = H(1)(X) + 1
2
ΛIJX̂IX̂J . (18)

Note that the dilaton field does not appear anywhere in this formula. To put the
symmetry relation (18) in its proper context, it is important to keep in mind that
H(1) should have a logarithmic singularity whenever an otherwise massive string mode
becomes massless; therefore, as an analytic function of (X0, X2, X3), H(1)(X) is gener-
ally multi-valued. According to eq. (18), the ambiguities of H(1) amount to quadratic
polynomials in the variables X̂I with some discrete real coefficients; indeed, under a
closed monodromy one generally has H(1) → H(1)+ 1

2
ΛIJX̂IX̂J even though the fields

(X0, X2, X3) remain unchanged. However, modulo these ambiguities, H(1) should be
invariant under all the exact symmetries of the perturbative string theory. This is
the main result of this section.

Let us now turn our attention to the dilaton field S. In perturbative string theory,
the dilaton vertex and its superpartners have fixed relations to the vector-tensor



multiplet. However, the duality relation between this vector-tensor multiplet and
the Abelian vector multiplet containing S = −iX1/X0 is not fixed but suffers from
perturbative corrections in both string theory and field theory. Therefore, while the
vector-tensor multiplet is inert under all the perturbative symmetries of the string’s
vacuum, the S field is only invariant classically but has non-trivial transformation
properties at the one-loop level of the quantum theory. Indeed, using the relation
X1 = −F̂1 = −iSX̂0, it is easy to show that the transformation rules (17) imply

S → S̃ = S +
iV̂1

J
(
H

(1)
J + ΛJKX̂K

)
Û0

I X̂I
, (19)

which in turn is sufficient to assure the correct transformation properties of all the
F̂I and not just the F̂1.

The transformation formula for H(1)(X) can be also translated into the aquivalent
transformation rules for h(1). For the case at hand, the target-space duality group is
SO(2, 2,Z) consisting of the T ↔ U exchange and of the PSL(2,Z)T and PSL(2,Z)U

dualities whose action is described by eq. (15). Substituting these dualities into the
general transformation law (18), we find

T → aT − ib

icT + d
, h(1)(T, U)→ h(1)(T, U) + Ξ(T, U)

(icT + d)2
, (20)

and a similar set of transformations (with T and U interchanged) for the PSL(2,Z)U .
The appearance of Ξ = i

2
ΛIJX̂IX̂J/(X̂0)2 in these formulæ complicates the symmetry

properties of the one-loop moduli prepotential, which would otherwise be a modular
function of weight −2 with respect to both T and U dualities. However, Ξ is a
quadratic polynomial in the variables (1, iT, iU, TU) and hence ∂3

T Ξ = ∂3
UΞ = 0; also,

it is a mathematical fact that the third derivative of a modular function of weight −2
is itself a modular function of weight +4 even though the derivative is ordinary rather
than covariant. From these two observations, we immediately learn that ∂3

T h(1)(T, U)
is a single-valued modular function of weight +4 under the T -duality and of weight
−2 under the U -duality and there are no anomalies in its modular transformation
properties; the same is of course true for the ∂3

Uh(1), with the two modular weights
interchanged.

The exact analytic form of a modular function can often be completely determined
from the knowledge of its singularities and its asymptotic behavior when T →∞ or
U → ∞. It was argued in ref. 20 that the gauge couplings of an N = 1 orbifold
cannot grow faster than a power of T or U in any decompactification limit and the
same argument applies here to the one-loop prepotential h(1) and any of its derivatives.
Let us therefore consider the singularity structure of the h(1)(T, U).

The gauge couplings of the [U(1)L]2 containing the vector partners of T and U
become singular whenever there are additional massless particles charged under this
group. As discussed in section 2, this happens along the complex lines T ≡ U , where



the U(1)2
L group is enlarged to an SU(2)×U(1); when such lines intersect each other,

the group is further enlarged to an SU(2)× SU(2) (at T ≡ U ≡ 1) or an SU(3) (at
T ≡ U ≡ ρ = e2πi/12). However, for a fixed generic value of U , the only singularities
in the complex T -plane (or rather half-plane Re T > 0) are at T ≡ U while the points
T ≡ 1 6≡ U and T ≡ ρ 6≡ U are perfectly regular; the same is of course true for the
singularities in the U -plane (or rather half-plane) when T is held fixed at a generic
value. Hence, for generic T or U but small T − U ,

h(T ≈ U) = 1
16π2 (T − U)2 log(T − U)2 + regular, (21)

although the “regular” term here is only regular when T ≈ U 6≡ 1, ρ. Note that h is
singular but finite when T ≈ U ; its third derivatives ∂3

T h = ∂3
T h(1) and ∂3

Uh = ∂3
Uh(1)

have simple poles at that point and similar poles whenever T ≡ U (mod SL(2,Z)).
This fact, plus all the other properties of the functions ∂3

T,Uh(1)(T, U) we have stated
above, allow us to uniquely determine

∂3
T h(1) =

+1

2π

E4(iT ) E4(iU)E6(iU)η−24(iU)

j(iT ) − j(iU)
,

∂3
Uh(1) =

−1

2π

E4(iT )E6(iT )η−24(iT ) E4(iU)

j(iT ) − j(iU)
.

(22)

This formula obviously determines the function h(1)(T, U) itself up to a polynomial
Ξ that is at most quadratic in T and in U , but we are unfortunately unable to write
that function in terms of familiar modular functions. However, it is easy to see that
eqs. (??) imply

∂T ∂Uh(1) = −1
4π2 log (j(iT )− j(iU)) + finite, (23)

The logarithmically divergent part of this one-loop gauge coupling can be also ob-
tained by computing the one-loop gauge threshold correction for the U(1)2

L gauge
group as a socalled free energy ∆ ∼ ∑

logM(T, U) 21. Specifically, the holomorphic
masses of the momentum and winding states of the T2 compactification are of the
form

Mm1,m2,n1,n2(T, U) = m2 − im1U + in1T − n2UT. (24)

Then the free energy becomes 11

∆(T, U) =
∑

m1,m2,n1,n2

log(m2 − im1U + in1T − n2UT ) = log(j(iT )− j(iU)), (25)

where the sum was taken over the orbit m1n1 + m2n2 = 1, and we have assumed a
modular invariant regularization procedure of the infinite sum. This formula has a
curious property that the coefficient of the logarithmic divergence is 1 when T ≡ U 6≡
1, ρ but becomes 2 when T ≡ U ≡ 1 and 3 when T ≡ U ≡ ρ, in precise agreement



with the number of the massive string modes that become massless in each case
(respectively, 2, 4 and 6 vector multiplets). On the other hand, the correct modular

transformation rules imply that h
(1)
TU is not entirely modular invariant but contains a

finite term, which transforms inhomogeneously under modular transformations. This
fact is an indication that there does not exist an modular invariant regulator when
performing the sum eq.(25), but there is a modular anomaly which spoils the modular
invariance of the free energy.

1. N. Seiberg and E. Witten, Nucl. Phys. B426 (1994) 19, Nucl. Phys. B431
(1994) 484.

2. A. Klemm, W. Lerche, S. Theisen and S. Yankielowicz, Phys. Lett. B344
(1995) 169, CERN preprint CERN-TH-7538-94 (hep-th/9412158);
P. Argyres and A. Faraggi, IAS preprint IASSNS-HEP-94-94 (hep-
th/9411057); A. Klemm, W. Lerche and S. Theisen, hep-th/9505150.
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