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ABSTRACT

Above the Hagedorn energy density closed fundamental strings form a long string
phase. The dynamics of weakly interacting long strings is described by a simple
Boltzmann equation which can be solved explicitly for equilibrium distributions.
The average total number of long strings grows logarithmically with total energy
in the microcanonical ensemble. This is consistent with calculations of the free
single string density of states provided the thermodynamic limit is carefully
defined. If the theory contains open strings the long string phase is suppressed.

1. Summary

In this talk we give a brief summary of the work described in more detail in
As is well-known, the exponential growth at high energies of the single string
density of states makes the canonical partition function ill-defined above the Hagedorn
temperature Ty. Different physical interpretations of this fact have been offered,
including that the Hagedorn temperature defines an absolute limiting temperature
in physics 2,® or that it signals a transition to an unknown high-temperature phase
where strings may be replaced by more fundamental degrees of freedom *.

The microcanonical ensemble, on the other hand, is well-defined above the Hage-
dorn energy density. Within the context of the non-interacting theory, it has been
argued that at high energy density, most of the energy is carried by a single long string
®. This physical picture is suspect because it neglects the effect of interactions. As
soon as one includes interactions, one must worry about the Jeans instability which
sets in at length scales satisfying R? > 1/(g%p), where p is the energy density and
g is the string coupling constant. The thermal ensemble will only be well-defined in
finite volume V| for sufficiently small g.

To include the effect of interactions, we set up a Boltzmann equation to describe
the long string phase. The physical picture we have in mind is a gas of very long
strings, where each string traverses the volume of the system many times. To leading
order, the physics will be independent of the details of the embedding of the string
in the target space, and will only depend on intrinsic properties such as its length.
We assume the energy of the long string is dominated by the string tension, so is
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proportional to length. Each string interaction will involve some average over the
momenta and relative orientation of the strings — in the long string limit this will give
the same factor for each interaction, c.f. . With these assumptions, the Boltzmann
equation for long closed strings is

+ [T acen(e)), (1)

where k is some positive constant which depends on the string coupling, and for
convenience we have set o/ = 1. Here n(f) is the average number of strings of length
‘.

As described further in !, the equilibrium distribution may be obtained which
leads to the single string density of states. In the microcanonical ensemble, one then
finds a stable distribution of long closed strings, with on average log E' long strings,
where F is the total energy. One concludes the single long string phase previously
found is unstable when interactions are included. The Boltzmann equation we have
constructed is a starting point for the study of the nonequilibrium thermodynamics
of fundamental strings at high energies.
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