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ABSTRACT

The N = 2 supersymmetric Kazama-Suzuki coset construction is generalized to
the N = 4 case by requiring the most general non-linear (Goddard-Schwimmer)
N = 4 quasi-superconformal symmetry. The N = 4 constraints on the allowed
cosets have very simple geometrical interpretation, and their natural (symmetric)
solutions are quaternionic Wolf’s spaces. A quantum BRST charge for the N = 4
string propagating on a Wolf space is constructed. Surprisingly, the BRST charge
nilpotency conditions rule out the non-trivial Wolf spaces as the consistent string
backgrounds. The critical dimensions for a flat background and all known N = 4
algebras are summarized.

The critical (non-topological) N = 4 strings are known since 1976, 1 but they
received little attention in the literature because of their apparently ‘negative’ critical
dimension. A closer inspection of the argument shows that (i) it was implicit that
the N = 4 string constraints form the ‘small ’ linear N = 4 superconformal algebra
(SCA) having the ̂su(2) affine Lie subalgebra, and (ii) the background space in which
an N = 4 string was supposed to propagate is flat. We are going to challenge both
assumptions 2, first, by replacing the ‘small’ linear N = 4 SCA by a more general
non-linear N = 4 algebra found by Goddard and Schwimmer (GS) 3 and having two

affine ̂su(2) subalgebras, and, second, by choosing a coset G/H as the embedding
space.

The GS N = 4 algebra comprises stress tensor T (z), four dimension-3/2 su-
percurrents Gµ(z), and six dimension-1 currents Jµν(z) in the adjoint of SO(4) ∼=
SU(2)+ ⊗ SU(2)−. The N = 4 supersymmetry part of the algebra takes the form
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where k+ and k− are levels of affine Lie algebras associated with SU(2)+ and SU(2)−.
Requiring the N = 4 supersymmetry, we expect the standard N = 2 conditions 4

to be satisfied for each supersymmetry. The general ansatz for the supercurrents is
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where hµ
āb̄

and Sµ
āb̄c̄

are constants, µ = 0, 1, 2, 3. Ĵ are affine G currents, ψ are free

fermions, and k = kG + h̃G, where h̃G is the dual Coxeter number of G. Early lower
case Latin indices are used forG-indices, middle lower case Latin indices forH-indices,
and early lower case Latin indices with bars for G/H-indices. Since our N = 4 coset
construction generalizes that of N = 1, we have h0
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of the N = 4 GS algebra are satisfied if and only if 2
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fāb̄d ,

so that Sµ
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= hµḡ
[ā fb̄c̄]ḡ . It just means that the coset must be quaternionic. Given

a simple Lie group G, there is the unique associated quaternionic symmetric space,
called the Wolf space. 5 The ̂SU(2)± currents are simultaneously fixed, 2 while the

levels of the two ̂SU(2)± affine subalgebras are just k+ = kG , and k− = h̃G − 2 . 2

The N = 4 GS algebra central charge is c = 6(kG + 1)(h̃G − 1)/(kG + h̃G)− 3 . No
additional consistency conditions arise.

The BRST quantization of an N = 4 string introduces the conformal ghosts, the
N = 4 superconformal ghosts and the internal symmetry ghosts, as usual. Each ghost
pair contributes −26, +11 and −2, respectively, to the (chiral) central charge. As to
the non-linear N = 4 GS algebra, a quantum BRST charge is known, 6 and it becomes
nilpotent only if k+ = k− = −2, which implies h̃G = 0 and, hence, an abelian G.
This essentially rules out Wolf’s spaces for the N = 4 string propagation, except for
a flat space. As far as the flat background is concerned, the vanishing central charge
(conformal anomaly) condition gives for the (quaternionic) critical dimension Dc the
following equations:

small N = 4 SCA : − 26 + 4 · 11 + 3 · (−2) + 4Dc(1 + 1
2) = 0 ,

N = 4 GS algebra : − 26 + 4 · 11 + 6 · (−2) + 4Dc(1 + 1
2) = 0 ,

large N = 4 SCA : − 26 + 4 · 11 + 7 · (−2) + 4 · (−1) + 4Dc(1 + 1
2) = 0 ,

where we have used the fact that the ‘large’ (linear) N = 4 SCA has an additional
U(1) affine symmetry and four free (auxiliary) fermions beyond the content of the GS
algebra. This gives Dc = −2,−1, 0, respectively.
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