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1. Gauge and Duality Symmetries in Superstring Theories

String theory is defined perturbatively through a set of rules for calculating
scattering amplitudes. Perhaps the most important outstanding problem is that
of finding the non-perturbative theory whose perturbation theory reproduces that
of string theory. This seems a daunting task, but recent progress has led to some
striking conjectures regarding the non-perturbative structure of the theory that
have passed many tests1−12. The picture that seems to be emerging is that there
is some as yet unknown theory that, when expanded perturbatively, looks like a
perturbative string theory, but which has a surprisingly simple structure at the non-
perturbative level which includes U or S duality symmetries relating perturbative
states to solitons, and weak coupling to strong. Moreover, there are a number
of different coupling constants corresponding to the expectation values of various
scalars, and the perturbation expansions with respect to some of these define string
theories, but different string theories arise for different coupling constants. This
leads to unexpected equivalences between string theories that look very different in
perturbation theory: they result from different perturbation expansions of the same
theory. In many cases, the strong coupling limit of a given theory with respect to a
particular coupling constant is described by the weak coupling expansion of a dual
theory, which is sometimes another string theory and sometimes a field theory.

An example which illustrates many of these points is the one obtained from the
toroidal compactification of the heterotic string to four dimensions on T 6. When
the full non-perturbative theory, including solitons, is considered, there is strong
evidence that the theory has an SL(2, Z) S-duality symmetry relating strong to
weak coupling and interchanging electric and magnetic charges6,7,8. The theory is
then self-dual: the strong coupling limit is described by the weak-coupling expan-
sion of a dual heterotic string theory, which is of exactly the same form, but with
magnetic charges arising in the perturbative spectrum while electric ones arise as
solitons. Expanding the same theory in other directions in coupling constant space
can give the perturbative expansion of the type IIA string or of the type IIB string
compactified on K3 × T 2, leading to the conjectured equivalence of the type II and
heterotic strings1. The expansion with respect to other coupling constants of the
theory has been considered in ref. 5.



The type II string compactified on K3×T 2 and the heterotic string compactified
on T 6 have the same low-energy effective actions. Moreover, there is evidence1 that
the spectrum of Bogomolnyi states – states saturating a Bogomolnyi bound – is
the same, although perturbative states of one theory can correspond to solitons of
the other. It was these two facts that led to the conjecture1 that the two string
theories are the same. However, such an equivalence would have some remarkable
consequences. Perhaps the most striking of these is that it predicts the existence of
enhanced non-abelian gauge symmetry in the type II string at special points in the
compactification moduli space, because this occurs for the toroidally-compactified
heterotic string13. For the heterotic string at generic points in the torus moduli
space, the Yang-Mills symmetry is the abelian group U(1)28, but at certain special
points it is enhanced to U(1)6 × K where K is a non-abelian group of rank 22
(e.g. SO(44) or U(1)6 × E8 × E8). The perturbative spectrum of the heterotic
string includes certain Bogomolnyi multiplets that contain massive gauge bosons
and it is these that become massless when the symmetry is enhanced. In the type
II string compactified on K3 × T 2, states with the same quantum numbers as the
heterotic string’s massive gauge bosons occur in the non-perturbative spectrum
and at generic points in moduli space these can be associated with extreme black
hole states1,4. As will be discussed below, whenever some of the heterotic string’s
gauge bosons become massless, the corresponding non-perturbative Bogomolnyi
vector states of the type II string become massless and the same non-abelian gauge
symmetry arises in both cases. Thus there are black hole states of the type II string
that become massless at special points in moduli space and become the gauge
bosons of the enhanced gauge symmetry. Strictly speaking, these states can be
associated with extreme black hole solitons at generic points in moduli space, but
as special points are approached it is probable that the semi-classical approximation
will break down and the Bogomolnyi states can no longer be reliably associated with
classical solutions. Nonetheless, arguments based on supersymmetry imply that the
Bogomolnyi states can be extrapolated to all values of the coupling, even though
their representation as black hole solitons is only valid in certain regimes, and it
is in this sense that the symmetry enhancement is due to ‘black holes becoming
massless’.

For theories with N ≥ 4 supersymmetry the masses of Bogomolnyi states are
determined entirely by the low-energy effective field theory. Thus, once the existence
of a massive Bogomolnyi state has been established at some particular point in
the moduli space of vacua, by whatever means, its mass at other points in the
moduli space is determined by the effective low-energy supergravity theory. In
particular, the mass of certain Bogomolnyi states must vanish at special points in
this moduli space purely as a consequence of N=4 supersymmetry. Since these
states must fill out vector supermultiplets the proof of symmetry enhancement in



N=4 supersymmetric theories rests on the existence of the relevant massive states
at generic points in moduli space.

In the toroidally compactified bosonic string there is perturbative symmetry
enhancement in the effective four-dimensional field theory but, since the effective
non-abelian gauge theory is asymptotically free, the conventional wisdom is that
all particles carrying non-abelian charge (which includes the massless non-abelian
gauge bosons) are confined. Thus, the extra massless states found in perturbation
theory are not likely to be present in the full theory. If it were possible to bypass
perturbation theory and deal directly with the full quantum string theory, one might
expect to find a transition to a confining phase at special points of the moduli space,
rather than the occurrence of additional massless states at these points.

The status of the symmetry enhancement in the toroidally compactified het-
erotic string is quite different because the effective non-abelian gauge theory at
special points of moduli space is not asymptotically free; in fact, the beta function
vanishes. Since confinement no longer operates to remove massless particles with
non-abelian charge from the spectrum it might be thought that here, in contrast to
the bosonic string, the extra massless particles found in perturbation theory indicate
the existence of extra massless particles in the full theory. However, the infrared
divergences due to unconfined non-abelian gauge fields do not allow a standard
interpretation of the Hilbert space in terms of particles with definite charge quan-
tum numbers. Instead, the existence of vector fields whose masses tend to zero as
one approaches special points in moduli space signals a transition to a non-abelian
Coulomb phase at these points in which there is a non-abelian gauge symmetry
associated with long-range forces.

As long as we are away from special points in moduli space there is no prob-
lem in providing a standard particle interpretation for the spectrum. At first sight
there would appear to be no difficulty in extrapolating this spectrum to those spe-
cial points at which some massive Bogomolnyi states become massless. Symmetry
enhancement in the toroidally compactified heterotic string has so far only been
analysed in string perturbation theory, with the result that electrically charged
Bogomolnyi perturbative string states become massless at special points in moduli
space. However, the heterotic string has non-perturbative magnetically charged Bo-
gomolnyi states arising from BPS monopole and dyonic solutions of the low-energy
theory8,16,17. For every electrically charged state whose mass tends to zero as one
approaches a special point in moduli space, there is also a magnetically charged
state and an infinite set of dyonic ones whose masses also approach zero. The in-
terpretation of this is not clear, but possibly signals a non-abelian Coulomb phase
of a type rather different from those discussed previously18. However, it does show
how symmetry enhancement might be consistent with the conjectured S-duality of
the heterotic string: whenever the mass of a perturbative string state tends to zero,



so do the masses of its magnetically charged SL(2, Z) partners. Thus, even for the
toroidally compactified heterotic string we learn something more about the sym-
metry enhancement mechanism from the analysis based on N = 4 supersymmetry
than we learn from the perturbative theory. A similar picture emerges for the type
II string on K3 × T 2. In fact, since this feature of the enhanced symmetry phase
depends only on N = 4 supersymmetry it applies equally to N = 4 super Yang-Mills
theory, i.e. as the Higgs expectation value tends to zero, all charged massive states,
including the magnetic monopoles and dyons, become massless together. Whatever
the correct interpretation of this may be, we wish to stress that it is a general
feature. In particular, if the Bogomolnyi spectrum of the K3 × T 2 compactified
type II string is the same as that of the toroidally compactified heterotic string at
some generic points of their respective moduli spaces1, then whatever happens to
the heterotic string at special points also happens to the type II superstring.

Symmetry enhancement can be established in superstring compactifications to
four dimensions preserving N = 4 supersymmetry merely by an analysis of the
low-energy effective field theory. The mass of a Bogomolnyi state with a given
charge vector is determined entirely by this effective field theory, so that symmetry
enhancement is the consequence of the mere existence in the spectrum of certain
states. The perturbative symmetry enhancement for the toroidally compactified
heterotic string13 can be extended to the full non-perturbative string theory, with
the result that magnetically charged states as well as the perturbative electrically
charged ones become massless1. The existence of the states relevant to symmetry
enhancement for K3 compactifications can be deduced by consideration of the p-
brane soliton solutions of the effective supergravity theory in a limit in which semi-
classical methods are reliable, because N = 4 supersymmetry tells us what happens
to these states in all other regions of parameter space4. These arguments are not
specific to string theory and apply in field theories as well, provided only that the
theory has the requisite massive states (e.g. arising as solitons).

The new results announced in this talk were obtained in collaboration with
Townsend4, and related results on symmetry enhancement in compactified type II
theories were announced in Witten’s talk3.

2. S,T and U Dualities

Consider type II or heterotic strings toroidally compactified to d dimensions. The
effective low-energy field theory describing the massless fields of the compactified
string is a d-dimensional supergravity theory which has a rigid ‘duality’ group G,
which is a symmetry of the equations of motion, and in odd dimensions is in fact
a symmetry of the action. In each case the massless scalar fields of the theory



take values in G/H, where H is the maximal compact subgroup of G. G has
an O(10 − d, 10 − d) subgroup for the type II string, and an O(10 − d, 26 − d)
subgroup for the heterotic string. In either string theory, it is known that this
subgroup is broken down to the discrete T-duality group, SO(10 − d, 10 − d; Z)
or O(10 − d, 26 − d; Z), which is an exact symmetry of the perturbative string
theory. It is natural to conjecture that the whole supergravity duality group G

is broken down to a discrete subgroup G(Z) (defined below) in the d-dimensional
string theory. Indeed, the Bogomolnyi solitons (including p-brane solitons) have
charges that transform under the duality group G and charge quantization implies
that these charges lie on a lattice. Then G is broken to at most the discrete subgroup
G(Z) of G that preserves the charge lattice1. In tables 1 and 2, we list these groups
for toroidally compactified superstring theories (at a generic point in the moduli
space so that the gauge group is abelian). In some cases, the duality group is a
direct product of the T-duality group with another factor, in which case we refer to
the other factor as the S-duality group. We refer to G(Z) as the U-duality group.

Space-time
Dimension d Supergravity Duality Group G String T-duality Conjectured

Full String Duality
10A SO(1, 1)/Z2

  

10B SL(2, R)  SL(2, Z)

9 SL(2, R)× SO(1, 1)  SL(2, Z)

8 SL(3, R)× SL(2, R) O(2, 2; Z) SL(3, Z)× SL(2, Z)

7 SL(5, R) SO(3, 3; Z) SL(5, Z)

6 O(5, 5) SO(4, 4; Z) SO(5, 5; Z)

5 E6(6) SO(5, 5; Z) E6(6)(Z)

4 E7(7) SO(6, 6; Z) E7(7)(Z)

3 E8(8) SO(7, 7; Z) E8(8)(Z)

2 E9(9) SO(8, 8; Z) E9(9)(Z)

1 E10(10) SO(9, 9; Z) E10(10)(Z)

Table 1 Duality symmetries for type II string compactified to d dimensions.

For the type II string, the supergravity duality groups G are given in ref. 15
. The Lie algebra of E9(9) is the E8(8) Kac-Moody algebra, while the algebra
corresponding to the E10 Dynkin diagram has been discussed in ref. 15. The
d = 2 duality symmetry contains the infinite-dimensional Geroch symmetry group of
toroidally compactified general relativity. In d = 9, a Z2 T-duality group might have



been expected, but the transformation that inverts the radius of the compactifying
circle also interchanges the type IIA theory with the type IIB one19, so that this
transformation is not properly speaking a T-duality20. In particular, whereas for
the bosonic string compactified on a circle one should factor out by the Z2 T-duality
which is a discrete gauge group, in the type II string one should not: the type IIA
string compactified on a circle of radius R is not the same as the type IIA string
compactified on a circle of radius 1/R, although it is the same as the type IIB string
compactified on a circle of radius 1/R.

Space-time
Dimension d

Supergravity
Duality Group G String T-duality Conjectured

Full String Duality
10 O(16)× SO(1, 1) O(16; Z) O(16; Z)

9 O(1, 17)× SO(1, 1) O(1, 17; Z) O(1, 17; Z)

8 O(2, 18)× SO(1, 1) O(2, 18; Z) O(2, 18; Z)

7 O(3, 19)× SO(1, 1) O(3, 19; Z) O(3, 19; Z)

6 O(4, 20)× SO(1, 1) O(4, 20; Z) O(4, 20; Z)

5 O(5, 21)× SO(1, 1) O(5, 21; Z) O(5, 21; Z)

4 O(6, 22)× SL(2, R) O(6, 22; Z) O(6, 22; Z)× SL(2, Z)

3 O(8, 24) O(7, 23; Z) O(8, 24; Z)

2 O(8, 24)(1) O(8, 24; Z) O(8, 24)(1)(Z)

Table 2 Duality symmetries for heterotic string compactified to d dimensions.

The effective field theory for the d = 2 heterotic string should be a d = 2
supergravity theory, for which G is given by the affine group O(8, 24)(1) symmetry15.
The heterotic string is conjectured to have an S × T duality symmetry in d ≥ 4
and a unified U-duality in d ≤ 3. Sen conjectured an O(8, 24; Z) symmetry of d = 3
heterotic strings21. The d = 10 supergravity theory has an O(16) symmetry acting
on the 16 abelian gauge fields which is broken to the finite group O(16; Z); we refer
to this as the T-duality symmetry of the ten-dimensional theory.

The discrete duality groups in 4 dimensions have been constructed explicitly1;
in particular, E7(7) is a subgroup of Sp(56, R) and E7(Z) is the intersection of E7(7)

with Sp(56, Z). The supergravity symmetry group G in d dimensions doesn’t act
on the d-dimensional space-time and so survives dimensional reduction. Then G is
necessarily a subgroup of the symmetry G′ in d′ < d dimensions and dimensional
reduction gives an embedding of G in G′, and G(Z) is a subgroup of G′(Z). We
use this embedding of G into the duality group in d′ = 4 dimensions to define the
duality group G(Z) in d > 4 dimensions as G ∩ E7(Z) for the type II string and as



G ∩ [O(6, 22; Z)× SL(2, Z)] for the heterotic string.
The symmetries in d < 4 dimensions can be understood using a type of argument

first developed to describe the Geroch symmetry group of general relativity and used
by Sen21 for d = 3 heterotic strings. The three-dimensional type II string can be
regarded as a four-dimensional theory compactified on a circle and so is expected
to have an E7(Z) symmetry. There would then be seven different E7(Z) symmetry
groups of the three dimensional theory corresponding to each of the seven different
ways of first compactifying from ten to four dimensions, and then from four to three.
The seven E7(Z) groups and the O(7, 7; Z) T-duality group do not commute with
each other and generate a discrete subgroup of E8 which we define to be E8(Z).
(Note that the corresponding Lie algebras, consisting of seven E7(7) algebras and an
O(7, 7), generate the whole of the E8(8) Lie algebra.) Similarly, in d = 2 dimensions,
there are eight E8(Z) symmetry groups and an O(8, 8; Z) T-duality group which
generate E9(Z) as a discrete subgroup of E9(9), and in the heterotic string there
are eight O(8, 24; Z) symmetry groups from three dimensions and an O(8, 24; Z)
T-duality group which generate O(8, 24; Z)(1) as a discrete subgroup of O(8, 24)(1).

3. Symmetry Enhancement and Bogomolnyi States in Four Dimensions

We now wish to see what can be learned directly from an analysis of the effective
four-dimensional theory for any theory which has at least N = 4 local supersym-
metry in d = 4. The bosonic massless fields of an N ≥ 4 supergravity theory are the
four-dimensional space-time metric gµν , scalars φi taking values in a sigma-model
target space M = G/H and vector fields AI

µ with field strengths F I
µν . The gauge

group has rank k and is abelian for generic points in the moduli-space, in which case
I = 1, . . . , k. It is a feature of such theories that the mass of any field configuration
satisfies a classical bound22,1,17 of the form

M2 ≥ ZARAB(φ̄)ZB (1)

where

Z =
(

pI

qI

)
(2)

and p and q are the magnetic and Noether electric charges defined by integrals over
the two-sphere at spatial infinity1. The matrix R is a function of the asymptotic
values φ̄i of the scalar fields. In the quantum theory, a similar bound applies to
all quantum states, with the numbers φ̄i now to be interpreted as the expectation
values of the scalar fields φi, parameterising the possible vacua.

Of particular interest are the ‘Bogomolnyi states’ saturating this bound, so that
their masses satisfy

M2 = ZARAB(φ̄)ZB (3)



These preserve half the supersymmetry and have a number of special properties:
(i) Their masses and charges receive no quantum corrections. (ii) The spectrum
of Bogomolnyi states is duality invariant. (iii) They fit into ultra-short N = 4 or
N = 8 massive supermultiplets with highest spin h; these have the same spectrum
of helicity states as the corresponding massless supermultiplets with highest spin h

(apart from the obvious charge doubling) and are the massive multiplets that can
become massless without a jump in the number of states. (iv) If the existence of
a Bogomolnyi state can be established for some values of the coupling constants,
it can be continued to other values and a Bogomolnyi with the given charges will
exist for all values of the couplings.

In the weakly coupled theory at generic points in the compactification space
moduli space, the Bogomlnyi states can arise either as elementary modes of the
string, or as solitons. In some cases, there is a soliton with the same quantum num-
bers as an elementary string state, in which case the two states should be identified1.
It remains an open question as to whether singular solutions can be acceptable as
solitons and, if so, what types of singularity can be allowed. The form of a solution
of an effective theory can only be trusted down to length scales corresponding to the
masses of the lightest fields that have been integrated out, and including such mas-
sive fields can drastically change the short-distance structure of a solution and in
some cases remove the singularity. Thus even if a solution is singular, the singular-
ity might be removed by including extra fields in the effective theory. The solutions
of the four-dimensional effective theory of massless fields are extreme ‘black holes’,
and the metrics23 are often those of naked singularities. For example, if some mas-
sive vector fields and scalars are included, the solution can become that of a BPS
monopole, while if Kaluza-Klein towers of massive fields corresponding to higher
dimensional fields are included, the solution can become a Kaluza-Klein monopole.
Many of the Bogomolnyi states arise from higher dimensions as ‘wrapping modes’,
consisting of p-brane solitons24 of a 10 or 11 dimensional theory wrapped around
non-trivial homology cycles of the compactifying space1 and all have a non-singular
higher dimensional interpretation 1, 4. Solitons of the effective theory may be good
representations of Bogomolnyi quantum states in certain coupling regimes, in the
same way that baryons can be represented as Skyrme solitons of the effective pion
theory. Once the existence of Bogomolnyi states has been established at weak cou-
pling and at generic points in moduli space, they can be extrapolated to other
values, although the representation as a elementary string state or as a soliton may
not be trustworthy.

We now turn to symmetry enhancement. A massive ultrashort supermultiplet
with given charge vector Z0 has a mass M(φ) given by Eq. (3) as a function of φ, and
this mass is expected to be exact and to receive no quantum corrections (for N ≥ 4
supersymmetry). If M(φ0) = 0 at some point φ0, then the supermultiplet becomes



massless in the corresponding vacuum. If the supermultiplet contains a vector field,
then there is extra gauge symmetry, and as we shall see, this is usually non-abelian.
The heterotic string has charged vectors that become massless at certain values
of the moduli, so that if the type II string has the same Bogomolnyi spectrum, it
too has vectors that become massless and lead to enhanced gauge symmetry. Thus
the question that needs to be addressed is which charge vectors Z are carried by
Bogomolnyi states and which of these can become massless.

The charge vector Z satisfies the DSZ quantization condition, which implies that
q takes values in some lattice Γ and p takes values in the dual lattice Γ̃. The matrix
R is a continuous function of φ̄, so that the masses of Bogomolnyi states are also
continuous functions of φ̄. Under certain circumstances the matrix RAB(φ̄) has a
(fixed) number of zero eigenvalues, for all values of φ̄. This might make it appear
that there should be extra massless particles for all values of the moduli, but this
is not the case for two reasons. First, at any given point on moduli space there
may be no points in the charge lattice that lie in the Kernel of RAB(φ̄). Second,
as we shall see in more detail later, not all points in the lattice of charges allowed
by the DSZ quantization condition actually occur in a given theory. In particular,
in string theory only those points in the electric charge lattice that are consistent
with the physical state conditions of perturbative string theory can correspond to
states in the string spectrum, and there are no such points whose charges are in the
kernel of RAB for generic points in moduli space. For special values of φ̄, however, a
finite number of string states have charge vectors in the kernel, so that they become
massless. Conversely, the mass of a Bogomolnyi state with given charge vector
can vanish only for certain values of φ̄. This type of argument was first used in
N = 2 theories10, but in that case there are quantum corrections to the masses that
can affect the conclusions. Here we shall restrict ourselves to theories with N ≥ 4
supersymmetry so that there are no corrections to the Bogomolnyi mass formula
and the classical analysis is reliable in the quantum theory. We shall return shortly
to consider the circumstances under which all conditions for massive Bogomolnyi
states to become massless at special points in moduli space can be satisfied in a
string theory, but we shall first examine some general consequences of N = 4 or
N = 8 supersymmetry in the event that this phenomenon occurs.

Thus, as φ̄ is continued to φ̄0, the ultrashort Bogomolnyi supermultiplets with
charge vector Z0 must continue (at least modulo 16) to massless supermultiplets
with the same highest spin. We do not expect the new massless supermultiplets to
have highest spin h ≥ 2, as these would lead to well-known inconsistencies. (These
inconsistencies might be avoided if an infinite number of supermultiplets become
massless. This occurs in a ‘decompactification limit’ in which some compact di-
mensions become non-compact, or in a null string limit. Such phenomena, which
we will not consider here, are associated with points on the boundaries of moduli



space. These inconsistencies might also be avoided if at the special points there was
no low-energy effective field theory description.) Since all N = 8 supermultiplets
have highest spin of at least two we should not expect any massive supermulti-
plets to become massless at special points in the moduli space of compactifications
that preserve N = 8 supersymmetry, e.g. the T 6 compactification of the type II
superstring. We shall verify this prediction below. For N = 4 there remain two
possibilities: h = 1 and h = 3/2.

Consider first the h = 3/2 case. The existence of additional massless spin-
3/2 states implies an enhanced N > 4 local supersymmetry, but this is possible
only if all massless states belong to the graviton supermultiplet, since there are
no massless matter supermultiplets (with h ≤ 1) for N > 4. Moreover, the total
number of massless vectors would increase since the N = 4 supermultiplet with
h = 3/2 contains vector fields. In the cases of most interest to us here, the toroidally
compactified heterotic string or type II on K3 × T 2, the number of massless vector
fields at a generic point in the moduli space is already 28, so that we would need an
effective N > 4 supergravity with more than 28 vector fields. There is no such theory
(the N = 8 theory has exactly 28). Moreover, the gauge group of the massless vector
fields would have to be non-abelian, for reasons explained below, and it is difficult
to reconcile this with a vanishing cosmological constant in a pure supergravity
theory. For these reasons, we exclude the possibility of additional h = 3/2 massless
supermultiplets. Since partially shortened supermultiplets saturating a stronger
bound must have highest spin h ≥ 3/2, this exclusion explains why we may restrict
our attention to ultrashort multiplets.

This leaves the possibility that massive N = 4 vector multiplets become massless
at special points in the moduli space of a compactification preserving N = 4 super-
symmetry. Ultra-short massive vector multiplets come in central charge doublets
which couple to the vector field A0 of the corresponding central charge. Con-
sider the case in which only one such charge doublet with vector fields A+, A−

(and their superpartners) becomes massless. Since the effective massless theory
now contains three vector fields with a trilinear A0A+A− coupling, consistency im-
plies that the original U(1)k gauge symmetry is enhanced to the non-abelian group
U(1)k−1 × SU(2). Note that there are also additional massless scalars, but that
these have quartic interactions (as required by N = 4 supersymmetry) so that their
expectation values do not constitute new moduli. More generally, several charged
doublets may become massless simultaneously, leading to an enhanced symmetry
group of higher dimension. The rank, however, must remain equal to k (and the
maximal rank of the maximal simple subgroup equal to k−6). This is because each
of the additional massless vector multiplets is charged with respect to one of the k

original U(1)’s.
Before turning to the conditions under which the matrix R has zero eigenvalues,



we will discuss the Bogomolnyi mass formula and its coupling constant dependence.

4. Bogomolnyi Masses in Four Dimensions

In four dimensions, the toroidally compactified heterotic string at a generic point
in its moduli space has gauge group U(1)28 so that there are 28 electric charges
qI and 28 magnetic charges1 pI . The supergravity field equations are invariant
under G = SL(2; R) × O(6, 22) and this is broken down to the integral subgroup
SL(2; Z) × O(6, 22; Z) of S and T dualities7,8. The scalar fields take values in the
coset space

G

H
=

SL(2; R)
U(1)

× O(6, 22)
O(6)×O(22)

and the 56 electric and magnetic charges transform as the irreducible (2,28) rep-
resentation of SL(2; R) × O(6, 22). The N = 4 supersymmetry algebra has 6 elec-
tric and 6 magnetic central charges q̃I , p̃

I given in terms of the charges qI , p
I by

q̃ = Kq, p̃ = Kp where K is a 6× 28 matrix function of the moduli that are given
by the asymptotic values of the scalar fields taking values in O(6, 22)/O(6)×O(22).
The N = 4 Bogomolnyi mass formula for BPS saturated states (preserving half the
supersymmetry) is7,8

M2 = ( p̃ q̃ )S
(

p̃
q̃

)
(4)

where M is the ADM mass in the Einstein frame and

S =
1
λ2

(
|λ|2 λ1

λ1 1

)
(5)

is an SL(2, R) matrix depending on λ = 〈a+ ie−Φ〉 = λ1 + iλ2, where a is the axion
and Φ is the dilaton. For vanishing axion expectation value λ1, the mass is given
by

M2 = g2q̃2 +
1
g2

p̃2 (6)

where g2 = 1/λ2 = 〈eΦ〉 is the string coupling constant. For the mass Ms measured
with respect to the stringy metric g̃µν , which is given in terms of the Einstein metric
gµν by g̃µν = eΦgµν , the formula Eq. (6) becomes

M2
s = q̃2 +

1
g4

p̃2 (7)

This form was to be expected, since the electric charges are carried by perturbative
string states while the magnetic ones arise from solitons, and the mass of a mag-
netically charged state has the standard 1/g2 coupling constant dependence of a
soliton.



The SL(2, R) symmetry acts as

S → ΛSΛt,

(
p̃
q̃

)
→ Λ−1

(
p̃
q̃

)
(8)

where Λ is a 2×2 matrix in SL(2, R), and (p, q) transforms in the same way as (p̃, q̃).
The Einstein metric gµν is invariant, and the mass formula Eq. (4) is manifestly
invariant. The SL(2, Z) transformation given by Eq. (8) with

Λ =
(

0 1
−1 0

)
(9)

interchanges electric and magnetic charges while λ → −1/λ. If 〈a〉 = 0, then the
coupling constant is inverted, g → 1/g, and weak and strong coupling regimes
are interchanged. Thus the theory is self-dual: the strongly coupled regime can
be treated using perturbation theory in the small coupling constant ĝ = 1/g and
this gives a dual heterotic string theory. In the weakly coupled theory, the electric
charges q were carried by g-perturbative states (i.e. ones that arise in the pertur-
bation theory with respect to g) and the magnetic ones p by solitons, while in the
dual theory the electric charges q are carried by solitons and the magnetic ones p

are carried by states that arise as ĝ-perturbative states.
For the dual theory, it is appropriate to use the dual stringy metric g̃µν , which is

given in terms of the Einstein metric gµν by g̃µν = e−Φgµν . The mass Md measured
with respect to this metric is then, from Eq. (6),

M2
d = p̃2 +

1
ĝ4

q̃2 (10)

This is consistent with the fact that p is carried by ĝ-perturbative states and q by
solitons for g >> 1 (ĝ << 1).

Consider now the type II theory toroidally compactified to four dimensions. The
gauge group is again U(1)28, so that there are again 28 + 28 electric and magnetic
charges that form a 56-vector Z which in the quantum theory must take values in
a self-dual lattice. The low-energy effective action is that of N = 8 supergravity14,
which has an E7(7) symmetry of the equations of motion which is broken to the
discrete E7(Z) U-duality symmetry of the string theory1. The charge vector Z
transforms according to the irreducible 56 representation of E7, which has the
decomposition

56 → (2,12) + (1,32) (11)

under the subgroup SL(2; R)×SO(6, 6). This is to be compared with the heterotic
string, for which the charge vector (p, q) has the decomposition

(2,28) → (2,12) + 16× (2,1) (12)



in terms of representations of SL(2; R)×SO(6, 6). In both cases there is a common
sector corresponding to the (2,12) representation of SL(2; R) × SO(6, 6), plus an
additional 32-dimensional representation corresponding, for the heterotic string, to
the charges for the additional U(1)16 gauge group and, for the type II strings, to
the charges for the Ramond-Ramond (RR) sector gauge fields. It is remarkable that
the 16 electric and 16 magnetic RR charges are singlets of S-duality and fit into
the irreducible spinor representation of the T-duality group; they are all carried by
solitons as they are not carried by elementary string states1.

The scalar fields take values in the coset space E7/SU(8) and can be represented
by a 56×56 matrix V that transforms under E7 from the right and under local SU(8)
transformations from the left14. The charge vector Z enters the Bogomolnyi mass
formula through the E7-invariant combination Z̄ = VZ, where V is the asymptotic
value of V. The Lie algebra of E7 can be decomposed into that of SL(2; R)×O(6, 6)
and its orthogonal complement X, so that V can be written as V = STR where
S ∈ SL(2; R), T ∈ O(6, 6) and R is the exponential of an element of X. Then the
dressed charge vector Z̃ = TRZ decomposes into 12 doublets of SL(2, R), consisting
of 12 + 12 ‘dressed’ electric and magnetic charges (p̃I , q̃I), together with 32 singlets
of SL(2; R), the ‘dressed’ RR charges r̃a. The ADM mass formula for Bogomolnyi
states in the Einstein-frame is then

M2 = ( p̃ q̃ )S
(

p̃
q̃

)
+ r̃2 (13)

where S is given in terms of λ = 〈a + ie−Φ〉 by Eq. (5). The dependence on λ can
be understood from group theory, and in particular the fact that the RR charges
r̃ occur without any dependence on λ follows from the fact that they are SL(2, R)
singlets. For vanishing λ1, the mass is given by

M2 = g2q̃2 +
1
g2

p̃2 + r̃2 (14)

For the mass Ms measured with respect to the stringy metric eΦgµν , this becomes

M2
s = q̃2 +

1
g2

r̃2 +
1
g4

p̃2 (15)

while for mass Md corresponding to the dual stringy metric e−Φgµν the Bogomolnyi
mass formula is

M2
d = p̃2 +

1
ĝ2

r̃2 +
1
ĝ4

q̃2 (16)

Thus, as in the N = 4 case, NS-NS electric and magnetic fields are interchanged un-
der strong/weak duality, but the states carrying RR charges are non-perturbative at



both weak and strong coupling. Whereas magnetic charges are associated with ef-
fects with the usual non-perturbative coupling dependence of e−1/g2

, the RR charges
are associated with ones with the stringy dependence e−1/g, similar to that found
in matrix models25.

5. Symmetry Enhancement

We now turn to the conditions under which the matrix R has zero eigenvalues.
N = 8 supergravity, the effective theory for the toroidally compactified type II
superstring, has a non-singular R-matrix so that, as predicted, there can be no
points at which R has zero eigenvalues4. N = 4 supergravity coupled to m vector
multiplets has k = 6 + m vector fields and the scalars take values in the coset space
G/H where G = SL(2; R)×O(6,m) and H = U(1)×O(6)×O(m). In this case, R
has precisely 2m eigenvectors with zero eigenvalue4 for all values of φ. If an electric
Bogomolnyi state with charge given by (p, q) = (0, V ) (for some lattice vector V )
becomes massless at some special modulus ϕ0, then the O(6, 22) norm V 2 of V must
be negative4 and any state with charge vector (p, q) = (mV, nV ) with m,n integers
will have a mass that also tends to zero as φ → φ0

4.

Consider the T 6 compactified heterotic string. In this case the parameters are
the T 6 moduli together with the real and imaginary parts of the complex variable
λ, which are the constant values of the four-dimensional axion and dilaton fields
a4 and Φ4

7. For weak coupling, i.e. g4 << 1, where g4 ≡
〈
eΦ4

〉
and is the same

as the ten-dimensional string coupling
〈
eΦ10

〉
for the heterotic string on T 6, the

electrically charged Bogomolnyi states arise as modes of the fundamental string
and have charges q for which q2 is even and satisfies q2 ≥ −2. As noted above,
states with q2 ≥ 0 do not become massless, which is just as well since that would
have meant higher-spin supermultiplets becoming massless. Also, the q2 = −2
states indeed fit into vector supermultiplets, as expected. Thus, only Bogomolnyi
states with q2 = −2 can become massless and for a given value of φ, the extra
massless states are the ones satisfying q2 = −2 and such that q̂ ∈ ker( + L). For
generic values of φ, there will be no such massless states, but for special values there
will a finite number of vectors in the charge lattice satisfying these conditions, and
these can be identified with the root vectors of the enhanced gauge algebra [13].
Conversely, for a given charge vector satisfying these conditions there is always a
vacuum for which this happens4.

Given any Bogomolnyi vector supermultiplet with (p, q) = (0, V ) such that V 2 =
−2, there are also supermultiplets with (p, q) = (V, nV ) and (p, q) = (2V, nV ) which
are represented for weak coupling and at generic points in the moduli space by
BPS monopoles and BPS dyons8,16,17. It has been shown7,8 that the conjectured



SL(2, Z) symmetry of the heterotic string spectrum implies Bogomolnyi states with
(p, q) = (mV, nV ) for all co-prime integers m,n. All these states must become
massless together4, so that S-duality and N=4 supersymmetry imply that as an
enhanced symmetry point of the heterotic string is approached there is an infinite
set of dyon states whose masses tend to zero, in addition to the purely electric and
purely magnetic states. The interpretation of the magnetic and dyon states as due
to quantization of solitons presumably fails at points of enhanced symmetry because
the sizes of the monopole and dyons approach infinity as their mass approaches zero.
This phenomenon is presumably another indication of a phase transition to a special
type of non-abelian Coulomb phase.

It is instructive to explore further the consistency of the conjectured S-
duality6,7,8 of the four-dimensional heterotic string with the phenomenon of sym-
metry enhancement. At strong coupling, g4 >> 1, the four-dimensional heterotic
string is conjectured to be related to the weakly coupled theory by S-duality, with
the roles of electric and magnetic charges interchanged. If so, then at generic points
in moduli space, electric states with (p, q) = (0, V ) are perturbative string states
for weak coupling and represented at strong coupling by solitons of the dual theory,
while magnetic states with (p, q) = (V, 0) are solitons of the weakly coupled theory
but are perturbative states of the dual theory. It is expected that the theory can
be smoothly continued in g4 without encountering any phase transition, in which
case S-duality implies that the electric and magnetic charges should be on exactly
the same footing. This would mean, in particular, that magnetically charged vector
states become massless at strong coupling through in the perturbative dual theory.
S-duality implies that magnetically charged states occur as perturbative states of
the dual strong-coupling theory, and if, as we are assuming, these can be continued
in g4 back to magnetically charged states at weak coupling, it is clear that magnetic
states with masses tending to zero at the special points must be present in the
weakly-coupled theory, even though their perturbative description as solitons in the
weak coupling theory breaks down.

The string theory coupling constant is g10 =
〈
eΦ10

〉
, but the dilaton Φ10 appears

differently in the two theories, as we shall now argue. In particular, Φ10 occurs
in the SL(2; R)/U(1) coset space for the heterotic string (and so can identified
with Φ4) while the type II dilaton lies in the O(6, 22)/O(6) × O(22) coset space
after compactification on K3 × T 2. This means that perturbative effects in the
heterotic string can be non-perturbative in the type II string, and vice versa. To
see this, we shall focus on the subgroup O(4, 20)×SL(2; R)S×SL(2; R)T×SL(2; R)U

of the duality group SL(2; R) × O(6, 22). For both superstring compactifications,
SO(2, 2) ∼ SL(2; R)T × SL(2; R)U acts on the moduli space of T 2 and SL(2; R)S

acts on the dilaton and axion fields arising in the usual way from the D = 10
dilaton Φ10 and the antisymmetric tensor gauge field. The space O(4, 20)/[O(4)×



O(20)], modulo the discrete group O(4, 20; Z), is the moduli space for K3 and for
the Narain construction of heterotic strings in six dimensions. For the heterotic
string, SL(2, R)T × SL(2, R)U ⊂ O(6, 22). For the type II string, however, the
RR charges are inert under S-duality1 and do not couple to the ten-dimensional
dilaton Φ10

20,3, so that Φ10 cannot be identified with Φ4, which does couple to
all charges. Thus it must be the case that SL(2, R)S ⊂ O(6, 22), and in fact
SL(2, R)S × SL(2, R)U ⊂ O(6, 22), so that the SL(2, R)S and SL(2, R)T factors
are interchanged compared with the heterotic string, as in ref. 9. In particular, for
the heterotic string, Φ4 coincides with the D = 10 dilaton Φ10 while for the type
II string they are distinct: Φ10 lies in O(6, 22)/[O(6) × O(22)] while Φ4 is one of
the T 2 moduli. It is interesting to note that the equivalence of the heterotic and
type II superstring compactifications together with T-duality in each theory implies
invariance of the spectrum under the full group O(4, 20)×SL(2; R)S ×SL(2; R)T ×
SL(2; R)U since what is non-perturbative in one is perturbative in the other.

For the K3 × T 2 compactification of the type II superstring is that symmetry
enhancement will occur if the Bogomolnyi spectrum includes electrically charged
states with q2 < 0. These states do not occur in perturbation theory but they
may appear in the non-perturbative spectrum as Ramond-Ramond (RR) solitons1.
Note, however, that if the conjectured equivalence to the heterotic string is correct
the type II string studied using perturbation theory in the T 2 modulus g4 ≡

〈
eΦ4

〉
should give the same results as the heterotic string expanded in the usual way order
by order in the string coupling g. For the type II string on K3×T 2, the usual string
perturbation theory in g is not useful as the RR soliton effects are non-perturbative
in g, whereas an expansion in g4 should yield results equivalent to those of the usual
perturbative heterotic string.
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