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ABSTRACT

We suggest some directions for future work on large N matrix and gauge field
theories which might eventually allow studying issues of locality and causality in
fundamental string theory. We also give a brief overview of recent work on the
large N limit of the exact solution of four-dimensional supersymmetric gauge
theory.

1. Introduction

A lot of effort, over more than twenty years, has gone into trying to solve field
theories (say in D dimensions) and lattice models of N ×N matrix variables M(x) or
Aµ(x) in the limitN →∞, or as an expansion in 1/N . (Fairly extensive bibliographies
can be found in Refs 1-3.) Such theories have well-known connections to string theory.
The first were reformulations of gauge theories as sums over surfaces, the simplest
being the strong coupling expansion on the lattice, which might have continuum limits
producing novel string theories (in D dimensions). Another approach is to regard
weak coupling (Feynman diagram) expansions as discretizations of two-dimensional
gravity. Using the double scaling limit, these can be used to construct fundamental
string theories, typically non-critical strings in target space-time dimension D + 1.

In both cases, the leading large N limit becomes genus zero in the string per-
turbative expansion, and 1/N becomes the closed string coupling constant: string
reformulations are perturbative expansions in 1/N . We can turn this around: given a
string reformulation, we can regard the original functional integral (or a scaling limit)
as a non-perturbative definition of the same string theory. The hope that this can be
done for fundamental superstring theory is perhaps the best reason to be interested
in these models.

However, for D > 1 these field theories are much harder to treat than the original
world-sheet formulation. Our only real hope of getting fundamental string physics
out of them is to identify qualitative features which we can understand without exact
solutions. Clearly we should look at the most distinctive features of string theory. A
good example is the generic e−1/

√
h̄ behavior of non-perturbative effects. 4

2. Locality and Causality in String Theory

Surely the most distinctive feature of string theory is that it is a theory of extended
objects. It is widely appreciated that this will ultimately lead us to a concept of space-



time radically different from that of field theory and in particular general relativity.
Let us start with a simpler problem. Our understanding of geometrical field

theories such as Yang-Mills and general relativity starts with an understanding of
the classical field theory. Although the quantum theory can be very different, it is
best to use geometric concepts such as metric, connection, and general covariance
in formulating and understanding it, and their definitions are classical. Perhaps the
same approach will be fruitful for string theory – to restrict ourselves to classical
string field theory, understand its geometry, and develop new concepts of locality
and causality there. Of course one can argue for and against this idea; for example
very interesting new features such as topology change already appear at genus zero
in studying string compactification, but on the other hand features such as duality
are only true of the quantum theory. In any case, it would seem simpler to study the
classical theory first.

In the context of large N and matrix models, a good reason to make this simpli-
fication is that it corresponds to taking the N → ∞ limit of the field theory first,
which produces a real simplification. For definiteness (this will suffice to make my
main points) let us consider a zero-dimensional model with only two matrices Aij and
Bij, an integral with an action S[A,B] which is a general function invariant under
global U(N) rotation A → UAU−1 and B → UBU−1. The observables relevant for
string theory (and gauge theory) are also U(N) invariant and these satisfy factor-
ization, limN→∞ 〈tr W1 tr W2〉 = 〈tr W1〉〈tr W2〉. Here W1 and W2 are any ‘word’
formed from the letters A and B such as An, Bn, AmBn, . . . . Two words not re-
lated by a cyclic permutation give different invariants, and their expectation values
are essentially independent in the limit N → ∞: one can vary them independently
with suitable variations of the action. More generally, the words would be arbitrary
sequences of points in space-time. In a gauge theory we would consider only the
gauge-invariant Wilson loops.

The (old) idea is that the limit is a new ‘classical’ field theory, different from
the original h̄ → 0 limit. The expectation values 〈tr W 〉 give a complete set of
coordinates on its configuration space, and using factorization, the Schwinger-Dyson
equations become the new classical equations of motion. For the two-matrix model,
we have (for each W and for B as well)

〈tr ∂S
∂A

W 〉 =
1

N

∑
W=W1AW2

〈tr W1〉 〈tr W2〉. (1)

All 〈tr W 〉 are O(N) and this non-linear equation contains enough information to
determine the limit of all vev’s in the field theory.

In all the existing string interpretations of large N field theories, we can make a
direct correspondance between small O(N0) fluctuations of the configuration δ〈tr W 〉
around a solution, and one-string states. Further terms in an expansion of the solution
in 1/N can be interpreted as sums over genus zero world-sheets. Thus this formal-



ism produces a non-perturbative definition of the classical limit of the string theory.
Although the words ‘non-perturbative’ and ‘classical’ might seem contradictory, they
are not – what one means is that one has a full non-linear equation of motion valid for
arbitrarily strong fields. These ideas apply to any large N field theory with adjoint
and vector fields.

A notation which emphasizes the similarity to field theory is to let the collection
of expectation values define a ‘string field’ φ(W ) = 〈tr W 〉, and rewrite (1) as

Lφ = gstφ ∗ φ. (2)

If φi(x) were a finite set of functions (and we allowed general coupling constants gijk

on the right) this would be a generic non-linear PDE.
In comparing this to continuum string field theory,5 the most notable simplification

is that we avoided the complicated infinite set of interactions required to reproduce
the usual integrals over closed string moduli space. What makes this possible is
that space-time covariance is not fully manifest; one of the space coordinates (the
Liouville zero mode of non-critical string) is represented by the length of a word, or in
continuum terms has been used to specify a world-sheet coordinate system. I believe
it is fair to say that this correspondance has not been completely understood, even in
the tractable c = 1 case. One advantage of studying locality and causality in D > 2
is that there are transverse dimensions, which are easier to interpret. Furthermore,
in the most sensible picture of non-critical string theory, the Liouville zero mode is a
space-like coordinate. Thus we expect that if two points are at space-like separation
in D dimensions, they will be at space-like separation in D + 1 dimensions.

Let us suppose we have a matrix model which we believe has a scaling limit which
produces an interesting higher dimensional string, ideally a superstring theory. We
can try to use these ideas to study locality and causality in this theory. We have a
precise configuration space, and the factorized Schwinger-Dyson equations provide a
classical equation of motion.

The equation (1) is a rather formal description of the theory and as a warm-up
for thinking about it let’s suppose someone handed us the equations of motion for
various field theories including gravity and matter, written in component form with
no further explanation. We would first observe that they are non-linear second order
PDE’s with some obvious solutions, such as flat space. We would go on to study how
a small variation of the fields propagates, and eventually discover the idea of light-
cone. The essential points for understanding causality are that this can be defined
locally (in an arbitrarily small but finite region) and it depends only on the metric.
Mathematically, the characteristics of a PDE are generally determined by the highest
derivative term.

We might next try to repeat this exercise for a component expansion of the string
field theory Lagrangian. We would quickly realize that since the coupling between
a component field of spin s and two scalars involves derivatives of order s, there is



no single component field which determines the causal structure. In this sense, the
string field equation of motion is fundamentally different from a PDE and thus from
all previous classical field theories. So far, nobody knows how to pose the standard
initial-value problem, with boundary conditions given on a space-like surface, in string
theory.

It is important to realize that these are non-perturbative questions. At any finite
order in perturbation theory, varying the background does not change the causal
structure. The point at which this is determined is in the choice of which linear
operator to invert to define the propagator. To see a change of causal structure, one
must include some interaction with the background in this operator.

Now matrix models do contain answers to these questions. For example, there is
no difficulty in defining the solution with specified boundary conditions on a space-
like surface, because it was defined in the original field theory. What makes these
answers difficult to get at is that we don’t have much control over the scaling limit
or the precise map between scaled results and continuum results in D > 2.

The main point I want to make is that we probably don’t need such control to
get interesting results. It would be very interesting to know how causal structure can
be modified by the choice of background in any D > 2 matrix model, even before
the scaling limit. Perhaps ideas relevant for string theory can be tested with matrix
models without having a full correspondance. How we do this depends on what we
believe the correct idea of locality and causality in string theory might be. Different
formalisms suggest different ideas. Perhaps if we avoided expanding in component
fields, we would discover more appropriate ideas of geometry in loop space, or perhaps
there just is no locality at distances shorter than the string scale, and we need to find
the new idea which replaces it.

Perhaps with such an attitude we can avoid the intractable problem of solving
equations such as (1). Unfortunately, we have no general techniques for approximating
the solutions, or even writing down ansatzes for the solutions.

If we think about how we might do this in field theory, we see a major shortcoming
in our understanding of large N field theories and string theory. For all but the most
primitive work on non-linear PDE’s, it is essential to have a good understanding of
related linear PDE’s and some ability to solve their initial value problem with general
boundary conditions. The most important related linear PDE is the linearization of
(2) with φ = 1

gst
φ0 + δφ,

Lδφ = φ0 ∗ δφ+ δφ ∗ φ0. (3)

Others also arise, for example the Lax pair of operators for integrable PDE’s. Unfor-
tunately, we do not know much more about linear equations for loop functionals φ0

and δφ than about non-linear equations.
A very simple example of a linear problem is in recent work by Neu and Speicher,6

who propose a generalization of Wegner’s model of localization. This is a model of
non-interacting electrons moving on a fixed lattice in a random potential. Large N



is brought in by taking N -component electron wave functions and using independent
N ×N hermitian matrices for the random potential.

Neu and Speicher consider the spectrum and Green’s functions of the random
operator

H = ∆(x, y)δij + Vij(x)δ(x− y) (4)

where x and y are lattice sites and ∆(x, y) is the lattice laplacian (hopping matrix).
The Vij(x) are independent random matrices with distribution given by integrals with
an arbitrary U(N)-invariant weight exp−N ∑

x tr w(V (x)).
This is not a hard model to solve – using diagrams, one must sum rainbow and

ladder diagrams, and the string theory analog would be an open string propagating
in a background. But the main point of Neu and Speicher’s work is that the recent
advances initiated by Voiculescu 7 relating largeN to free probability theory make this
model trivial to solve. It is easy to construct a master field V̂ (x) which reproduces
the large N limit of all expectations 〈tr W 〉 of words made from the V (x). This
turns the problem of finding the average spectrum of the random operator H into the
problem of finding the spectrum of a single Schrödinger operator Ĥ with In terms the
concepts discussed by Gross in his talk here, ∆ and V̂ are relatively free operators,
so the spectrum of Ĥ is simply the additive free convolution of their spectra.

The work of Gopakumar and Gross, myself, and others precisely defining master
fields 1,2,8 opens the direction of extending such techniques to more interesting large
N theories. However the field is still in an early stage and it is not yet clear how this
work helps to solve (1) for more complicated models. I believe the appropriate next
step is instead to solve more sophisticated linear problems, such as (3) with more
complicated backgrounds φ0, or equivalent master field problems analogous to the
one of Neu and Speicher.

In the context of string theory, the main reason such problems have not been
much studied is that we are used to the idea that in string theory we should not
study fluctuations around a background which does not solve the equations of motion.
This restriction makes locality and causality very obscure, because we can’t vary the
background at a single point in space-time. Such backgrounds are completely well
defined in a large N field theory before we take the scaling limit, making these issues
much more accessible.

We should start by asking, since we are starting from a field theory, how could we
get a different causal structure from the original field theory? Perhaps the formalism
of loop equations is unnecessary – after all, if we can sum the standard weak coupling
expansion, we get a solution of the equations. The sum of planar diagrams has finite
radius of convergence (assuming we have both UV and IR cutoffs) so this sounds
like a valid approach, and it sounds like this must reproduce the original concept of
space-time as the underlying field theory. We could think of the strings as assemblies
of particles (or ‘beads’) moving in the original space-time.

This is probably not the whole story. Suppose we make a finite perturbation



of the vev for a loop L of finite extent, φ1(W ) = φ0(W ) + cδ(W,L). (The ‘delta
function’ δ(W,L) is a functional of W with support on loops ‘near’ L.) The linearized
propagation around such a background now includes the interaction with this loop,
δφ∗δ(W,L), and this is non-local in terms of the original space-time. This is certainly
one natural way to generalize the concept of causal structure for string theory, and is
worth studying.

It is also important to realize that the weak coupling expansion might not be
summable. A good way to see this is to think about the strong coupling expansion
for a gauge theory. It has finite radius of convergence and so formally it is summable
as well. Now the two expansions have very different qualitative properties at leading
order, and it would be highly non-trivial for both to sum to the same results. In
fact they do not in almost every solvable case – the N → ∞ limit exhibits phase
transitions as a function of the coupling. It is a good bet that this is true in general,
because one can understand the transition as a consequence of positivity constraints
on physically realizable configurations. 1 These include the constraint ρ(λ) ≥ 0 for
the spectral density of each of the matrix variables, and multi-matrix generalizations.
They are additional structure of configuration space not already contained in (1),
and often must be imposed separately to obtain correct solutions. One can see from
known properties of D > 2 gauge theory that in the two limits, different constraints
are expected to be saturated. Thus the continuation of the solution in one limit will
not produce the other limit, and both of the standard expansions fail.

It is likely that this structure is relevant for matrix models of fundamental strings
as well, and this can be illustrated with the c = 1 matrix model. The standard
treatment describes the large N limit of the phase space with a spectral density ρ(λ)
and conjugate variable Π(λ). Suppose we were unable to solve for the (trivial) collec-
tive field theory ground state. We might make the following preliminary observation:
since the constraints become important where ρ(λ) = 0, it would be interesting to
study a point in λ space separating a region in which ρ(λ) > 0 from ρ(λ) = 0. Of
course the true ground state has such a point and indeed the scaling limit focuses on
it. Perhaps classifying the analogous possibilities in D > 2 will allow us to identify
possible scaling limits without solving the theory.

This detailed structure of configuration space may be important, but the most
important similarity between large N field theory in D > 2 and string theory surely
is the size of the configuration space. At the most naive level, since both theories are
formulated in terms of loop functionals, we would say they are comparable. However
there is also a sense in which the large N configuration space is far larger than the
configuration space of classical string field theory!

The simplest measure of this is to consider a ‘grading,’ an integer n which allows
us to divide the invariants into finite sets Sn, and ask how the size of the set grows
with n. In D-dimensional free quantum field theory, the Hilbert space has a basis
of one-particle, two-particle states and so forth, and the energy E provides a natural



grading. It is familiar that the number of states grows roughly as exp E1−1/D.
Small variations of the loop functionals Φ[X(σ)] of string field theory are in corre-

spondance with states of the two-dimensional world-sheet theory and in this grading
(using E = L0 + L̄0) the number of states grows as exp E1/2. This is ‘world-sheet en-
ergy,’ related to space-time mass as E = m2, so this subexponential behavior is com-
patible with the familiar Hagedorn behavior expm. For many purposes (in particular
if one tries to precisely define the operations in the string field theory Lagrangian)
the world-sheet density of states is the more relevant measure of this size.

In large N field theory, a natural grading is the length L of the word, and the
number of words grows as expL. It appears that this is the appropriate measure of
the ‘size’ of the configuration space (it governs the structure of the terms in (1)), and
in this sense the size is larger than any quantum field theory.

The difference between sub-exponential and exponential growth appears to be
crucial and apparently even the mathematicians have only a primitive understanding
of such spaces and the related operator algebras. A very elementary introduction to
this is given in Ref. 1, with references for further reading.

In any case I want to emphasize the large number of degrees of freedom as a
similarity between large N field theory and string theory. At this point the reader
may be shaking his head, as it has become almost a dogma in recent years that
string theory (in D > 2) has fewer physical degrees of freedom than a local quantum
field theory. This is an important idea and I will not try to review the arguments
which are given to support it, but instead propose that in a different and more formal
sense, string theory has more degrees of freedom than field theory. Indeed the two
statements might not be in conflict! Let me draw an analogy to the relation between
classical and quantum mechanics. In general, a physicist would say that a quantum
system has fewer degrees of freedom than its classical limit. This is clearest in the
thermodynamics as the states with E >> kT are frozen out and of course this
observation in the context of black body radiation was the original motivation for
quantum mechanics.

However, there is also a familiar mathematical sense in which a quantum mechan-
ical system has more ‘degrees of freedom’ than its classical limit. If we ask how much
mathematical data we need to give to completely specify the state of a particle (say
in one dimension) at a given time, we need a wave function ψ(x) as compared to
two numbers (x, p). This is much more data, and it is unavoidable – to do quantum
mechanics we must allow superposition of states.

I believe this analogy will turn out to be valid – string theory has fewer ‘physical
degrees of freedom’ than field theory, but any complete formalism will require more
‘mathematical degrees of freedom,’ at least the number already visible in conformal



field theory and string field theory. But time will tell.

3. Supersymmetric Gauge Theory

The reader has probably gathered from my choice of topics that I suspect that
large N QCD will not be solved anytime soon, and that although a correct and useful
string reformulation may exist, discovering it will require new ideas.

A traditional, less ambitious approach to large N QCD is to study its qualitative
properties, and where necessary simply assume that it is qualitatively similar to QCD
with N = 3. (The classic introduction is Ref. 9.) The assumption stressed in the
past was confinement – all poles in Green’s functions correspond to propagation of
color singlet objects. This includes the assumption that the mass gap stays finite as
N → ∞. Combining this with general results such as the topological classification
of Feynman diagrams leads to many consequences. The most famous example is
the explanation of the Zweig rule as due to the suppression of internal quark loops
by 1/N . It was also argued that mesons should be metastable with a three-meson
coupling O(1/N), exotic bound states are absent, solitons of the meson theory can
be interpreted as baryons, and so forth. More recent work has made quantitative
statements as well, for example Refs. 10.

Recent work on supersymmetric gauge theory11,12,13 has provided the exact low-
energy effective field theory for N = 2 and ‘almost N = 2’ gauge theory in four
dimensions! Now this does not (yet) directly answer many of the questions of hadronic
physics, because supersymmetric QCD is not QCD, because we are interested in finite
energies, and so on, but it does allow us to make very non-trivial tests of the earlier
analytic approaches. In general these approaches did not make strong restrictions on
the matter content of the gauge theory, so a priori they are just as well justified for a
gauge theory with the special matter content required by supersymmetry as for QCD.
Of course this statement should not be accepted blindly but thought about carefully
in the context of a particular approach.

In the case of large N , there is no difficulty with adding the adjoint gauginos and
scalars required by N = 2 supersymmetry – the topological classification of diagrams
works in the same way. Although gaugino and scalar loops are not suppressed by 1/N ,
we can still assign a definite topology to each diagram, so if the input assumptions
are still true, we can test the large N lore.

The basic low energy physics of supersymmetric gauge theory was discussed in
Refs. 11-13. The N = 1 theory minimally coupled to an adjoint chiral superfield has
N = 2 supersymmetry. This theory is solvable and is always in a Coulomb phase
described by an effective U(1)N−1 gauge theory. Non-renormalization theorems guar-
antee the existence of flat directions in the potential for the scalar component of the
chiral superfield which allow a continuous moduli space of vacua (any vev satisfying
[φ, φ+] = 0). There are quantum corrections to the masses of the charged gauge



bosons and monopoles, whose effect is to eliminate the classical points of unbroken
non-abelian symmetry – they split up into points at which monopoles and dyons
become massless.

A small mass term for the chiral superfield breaks the supersymmetry to N = 1,
but if the massm << Λ the gauge theory scale, this can be treated as a perturbation of
the N = 2 theory. Its effect is to drive monopole condensation, which spontaneously
breaks magnetic U(1)N−1, producing electric confinement and a gap.

The light spectrum of the theory (without quarks) is thus the light spectrum of
supersymmetric abelian Higgs theory, with light degenerate vector and chiral mul-
tiplets of mass O(

√
mΛ). These should be interpreted as ‘glueballs’ of the original

gauge theory.
Such a picture of electric color confinement by monopole condensation was antic-

ipated in the work of Mandelstam and especially ’t Hooft,15 who proposed the formal
devices of introducing adjoint Higgs fields, or considering expectation values for com-
posite adjoint scalars such as dabc〈F b

µνF
c
µν〉, to get an effective Abelian gauge theory

with monopoles.
So far it would appear that the physics of N = 1 supersymmetric gauge theory

is rather similar to that of bosonic gauge theory and even QCD. Confinement is no
longer an assumption but is derived (from simpler assumptions), and the large N
limit of the low energy effective theory should be consistent with the old lore.

Recently Steve Shenker and I studied the SU(N) effective theory at finite and
large N .14 The details are too lengthy to repeat here but besides fleshing out the
picture above, we found numerous surprises! First, the explicit breaking of SU(N)
to U(1)N−1 (e.g. by the scalar vev) also breaks the discrete gauge symmetry SN ,
so at weak coupling (large scalar vev in the N = 2 theory) the W boson masses
are non-degenerate. We found that this breaking persists even in the vacuum of
almost-N = 2 gauge theory. One consequence is that there are (N − 1)/2 distinct
string tensions for the flux tube solutions in the N − 1 Abelian Higgs theories of
the effective theory. Although the conventional definition of ‘string tension’ (which
governs the long distance limit) picks out the smallest of these, the others are visible
both in the Wilson loop expectation and in the meson spectrum. The string tensions
have the rough spectrum Tn ∼ mΛN sin πn

N
, so the conventional string tension and

the mass gap stay finite as N →∞, but the ratio between this and the largest string
tension is O(N). Thus a large hierarchy of scales is present.

These results could also be used to understand bound states of heavy quarks. In
the U(1)N−1 effective theory of confinement, each of theN different colors of quark has
a different U(1)N−1 charge. A neglected puzzle in this theory is that apparently bound
states will come with multiplicity because of this – for example qq̄ has multiplicity
N . At first one might think these should be identified to produce the usual spectrum
of color singlets visible in the strong coupling expansion. Perhaps surprisingly, this is
not correct – rather the qq̄ states form a ‘split’ multiplet of N quasi-degenerate (mass



splittings of order m) metastable (the decay rate vanishes as m→ 0) states.
The different colors of quark are distinguishable because of spontaneous breaking

of SN discrete gauge symmetry and one might wonder if this symmetry is restored
by a phase transition at some mc, producing a ‘confined SN phase.’ Often phase
transitions can be ruled out in a theory with unbroken supersymmetry: the vacuum
energy is always zero, so first order transitions are not possible, while second order
transitions are associated with massless particles, which are not present here. Indeed,
there is no order parameter distinguishing the broken and confining phases, and thus
our description can be continuously connected to a more conventional description
with strict color confinement.

Since the theory contains a light scalar (with bare mass m), the conventional
interpretation of the split multiplets is as color singlet bound states with the scalar,
and we presented evidence that the two interpretations are compatible. Our ‘almost-
N = 2’ analysis was justified for m << Λ but because there is no phase transition,
the split multiplet will evolve smoothly into a tower of unstable bound states for large
m, where the confining description should be appropriate.

The large N limit is particularly subtle because of the large hierarchy of scales.
Indeed, one very quickly runs into a paradox, because the form of the effective La-
grangian is essentially determined by N = 2 supersymmetry and the number of light
charged particles. Here they are the monopoles, and the low energy gauge coupling
constant is produced dynamically by evolving their beta function. There are N − 1
monopoles, one in each magnetic U(1) factor, and thus the final Lagrangian does not
have any explicit N dependence, and scattering amplitudes do not obey the standard
N counting rules. For example, the three ‘glueball’ scattering is O(1), not O(1/N).

Although the conclusion appears to be in direct contradiction with large N lore,
it turns out that the two pictures are valid in different regimes, because the effective
Lagrangian is only valid at energy scales O(Λ/N2), going to zero in the limit. The a
priori estimate of its regime of validity is the lightest mass of a particle we integrated
out to derive it. Here these are the charged gauge bosons, and again there is a large
hierarchy of scales in the solution, with the lightest of these having mass O(Λ/N2).

There is a regime in which we can trust the effective Lagrangian and the abelian
monopole condensation description. It is reached by taking m ∼ 1/N4 so that the
mass gap

√
mΛ falls within its regime of validity. Of course this mass gap vanishes

as N →∞ so we explicitly violate the starting assumption of large N lore. There is
no contradiction with the idea that the lore still holds for m ∼ N0.

The upshot is that in ‘almost-N = 2’ theory, monopole condensation and large
N provide two different descriptions of the physics, with no overlap in their regime
of validity. Perhaps supersymmetry and large N can be combined in a different way
to exploit the advantages of both. But it is conceivable that the O(N) hierarchy of
scales is a general feature of the large N limit of four-dimensional gauge theory, and
that the conventional lore would need to be modified.
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