GRAVITATIONAL DRESSING OF RENORMALIZATION GROUP β -FUNCTIONS

H. DORN

Institut für Physik, Humboldt-Universität, Invalidenstr. 110 D-10115 Berlin, Germany E-mail: dorn@ifh.de

The coupling of 2D conformal field theories to quantized 2D gravity (gravitational dressing) is well understood, at least for central charges $c \le 1$ or $c \ge 25$. Only recently there has been some progress in the general discussion of gravitational dressing of the larger class of renormalizable 2D field theories. One considers a 2D theory described by the action

$$S = S_c + \sum_{i} \lambda_i \int V_i d^2 z , \qquad (1)$$

where S_c is the action of a conformal field theory with central charge c, V_i a set of marginal operators with respect to S_c which is closed under renormalization and λ_i dimensionless couplings. Then it has been shown ^{1,2,3,4} that the gravitational dressed RG β -functions $\bar{\beta}_i(\lambda)$ in lowest order are related to the original β -functions $\beta_i(\lambda)$ corresponding to the action S by the universal formula

$$\bar{\beta}_i(\lambda) = \frac{2}{\alpha Q} \beta_i(\lambda) . \tag{2}$$

 α and Q are fixed by the central charge c of the unperturbed theory S_c

$$Q = ((25 - c)/3)^{1/2}, \qquad \alpha(Q - \alpha) = 2.$$
 (3)

In its generalization to the case of an infinite number of couplings i.e. to generalized σ -models the dressing problem addresses the question: What critical (d+1)-dimensional string is the gravitational dressed version of what non-critical d-dimensional string?

Looking at a theory with a RG flow between two fixed points it is evident from the c-theorem that the simple result (2) cannot be valid for all higher orders. In our paper 5 we extend the $\beta \leftrightarrow \bar{\beta}$ relation to the nextleading order of perturbation theory. Based on a background-quantum split for the Liouville field, which describes the gravitational degree of freedom in conformal gauge, we construct the gravitational dressed action

$$\tilde{S} = S_c + S_L + \sum_i \lambda_i \int \tilde{V}_i \sqrt{\hat{g}} d^2 z \tag{4}$$

by the requirement of background independence. Here $S_L[\phi|\hat{g_{ab}}]$ is the Liouville action and for \tilde{V}_i the ansatz

$$\tilde{V}_i(z) = e^{\delta_i \phi(z)} V_i(z) \tag{5}$$

is made. By this procedure the coefficients δ_i are fixed as functions of the renormalized couplings.

After this step we consider the response of the theory to a change of the cutoff in geodesic length. Out of this one can construct the gravitational dressed β -functions $\bar{\beta}$. In the simplest case of one coupling we find for $\beta(\lambda) = \beta^{(2)}\lambda^2 + \beta^{(3)}\lambda^3 + ...$ and an analogous expansion for $\bar{\beta}(\lambda)$

$$\bar{\beta}^{(2)} = \frac{2}{\alpha Q} \beta^{(2)} \quad \text{and} \quad \bar{\beta}^{(3)} = \frac{2}{\alpha Q} \left(\beta^{(3)} - \frac{(\beta^{(2)})^2}{Q^2} \right) .$$
 (6)

Based on the interpretation of the Liouville field as an additional target space coordinate and the identification of its constant part ϕ_0 with the logarithm of the RG scale via $\phi_0 = \frac{2}{\alpha} \log \mu^{6,7}$ and refs. therein, for generalized σ -models there has been derived ⁶ a second order differential equation for the flow of couplings. Reduced to the one coupling case it looks like (· denotes differentiation with respect to ϕ_0)

$$\ddot{\lambda} + Q \dot{\lambda} = \beta(\lambda) . \tag{7}$$

Taking into account the standard suppression of one Liouville dressing exponent, i.e. one solution of the quadratic equation in (2), one finds for a first order zero of β that $\dot{\lambda}$ becomes a function of λ . We supplement eq. (7) by the requirement of a unique relation between $\dot{\lambda}$ and λ in the neighborhood of the origin also for second and higher order zeros of β . Then we are allowed to make a power series ansatz $\dot{\lambda} = \frac{\alpha}{2} \ \bar{\beta}(\lambda)$. Inserting it into (7) one reproduces (6) up to a factor 2 in front of $\frac{(\beta^{(2)})^2}{Q^2}$. This minor discrepancy raises the question of scheme dependence for the construction of $\bar{\beta}$. A source for scheme dependence of $\bar{\beta}^{(3)}$ can be found also inside our approach ⁵ by giving up minimal subtraction for the construction of the function $\delta(\lambda)$. Astonishingly, along this line of arguments we find scheme dependence of $\bar{\beta}^{(3)}$ although the original $\beta^{(3)}$ in the one coupling case is scheme independent.

- 1. C. Schmidhuber, Nucl. Phys. **B404** (1993) 342
- 2. I.R. Klebanov, I.I. Kogan, A.M. Polyakov Phys. Rev. Lett. 71 (1993) 3243
- 3. J. Ambjorn, K. Ghoroku, Int. Jour. Mod. Phys. **A9** (1994) 5689
- 4. Y. Tanii, S. Kojima, N. Sakai, *Phys. Lett.* **B322** (1994) 59
- 5. H. Dorn, *Phys. Lett.* **B343** (1995) 81
- 6. C. Schmidhuber, A.A. Tseytlin, *Nucl. Phys.* **B426** (1994) 187
- J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, preprint CERN-TH 7480/94, hep-th/9503162