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ABSTRACT

We discuss chiral fermionization as a method for exploring new conformal field
theory solutions to string theory. An extension of conventional free fermionic
representation theory by twist field realizations of current algebras is described.
New exact solutions to heterotic string theory with (4,0) supersymmetry are
presented.

1. Introduction

Chiral fermionization [2][3] is a useful technique to discover new classes of con-
formal field theory (cft) solutions to string theory. There are many overlapping ap-
proaches to studying the vacuum configurations of string theory, each with its own
particular advantages. The fermionic construction has the capability to sample new
moduli spaces at orbifold, or otherwise special, points where the cft is exactly solv-
able and also has an equivalent fermionic realization. An important benefit for model
building is that it enables one to systematically find exact solutions embedding spec-
ified low-energy matter content and couplings in a calculable framework.

However, the fermionic description only captures isolated pieces of a string moduli
space requiring that we infer the structure of the moduli space from the detailed
knowledge of the theory at a collection of “points”, generally, of higher symmetry.
It must therefore be combined with spacetime techniques in studying low-energy
string theory. This is also true of other exact (all orders in o) cft descriptions with
which the fermionic construction has solutions in common. These include the Gepner
construction based on the tensor product of minimal models and the simple current
construction of Schellekens and Yankeilowicz. There has been spectacular progress
in developing spacetime techniques for studying (2,2) models and also certain classes
of (0,2) models. Combining these complementary approaches is likely to give in the
future a broader view of low energy string theory than is presently known.

My work on developing fermionization techniques for superstring model building
was done in collaboration with Stephen Chung, George Hockney, and Joseph Lykken,
further details of which can be found in [3]. New results on (0,4) models presented in
the talk have since appeared in the literature®. It should be noted that the heterotic



light-cone construction described here can be easily modified to find solutions to a
theory based on a different world-sheet superconformal algebra.

2. The Fermionic Construction

The fermionic construction of exact conformal field theory solutions is based on
current algebras, including both the untwisted and also the twisted affine Lie algebras.
The familiar free fermionic construction?® is restricted to level one current algebra re-
alizations where all currents are realized as Majorana fermion bilinears. Prior to our
work, the extension to twist field current algebra realizations was largely unexplored
and unfamiliar, even to experts in fermionization. The ability to recognize and com-
bine both classes of fermionic current algebra realizations has enabled us to find many
new and exact solutions to heterotic string theory, and in a truly heterotic framework.

The earliest examples of such solutions were obtained in the work of Kawai,
Lewellen, Schwartz and Tye?. In this work, it was noted that there appeared to
be more solutions for modular invariant one-loop partition functions in the fermionic
construction, than those that could be accounted for by free field realizations alone. In
abstract (2,0) cft constructions a one-loop modular invariant partition function does
not in itself define a solution to string theory. It is important to obtain a consistent
string vertex operator algebra that is associative, so that couplings are well-defined.
The issue of which of the solutions in the KLST construction have this property was
addressed by us in [3], using techniques from rational conformal field theory. This
enables us to use the exactly solvable fermionic description to construct the entire
superpotential, including non-renormalizable terms, for any given solution.

To obtain models with generic gauge groups and generic matter content in the
fermionic construction we have introduced several new features in the underlying
fermionic representation theory. In a modular invariant cft solution to string theory
the individual Majorana-Weyl fermions are of three species: paired into right-moving
Weyl fermions or left-right Ising fermions, or members of a block of chiral Ising
fermions. The choices of spin structure for blocks of chiral Ising fermions consistent
with associativity of the cft were analysed in [3]. If all of the chiral Ising fermions
in a block are left-moving, this corresponds to a holomorphic cft of central charge
cm=8, 12, 14, 16, 18, 20, or 22. Such holomorphic cfts can be tensored together with
holomorphic Weyl fermion cfts to build (4,0) models with moduli spaces of reduced
dimension, as we will see in the next section.

The case of N=1 supersymmetry is far richer and more interesting. In an N=1
model, the block of chiral Ising fermions can be split among nj, left-moving and ng
right-moving fermions, such that n;+ngr=2c,, takes one of the allowed values listed
above3. This class of (2,0) solutions includes many new possibilities for three gen-
eration models, and many new embeddings of the standard model particle content
with both higher level and level one realizations, and with varying hypercharge nor-



malization. These models will be explored elsewhere, as will the generic presence of
a tree-level anomalous U(1). These models are the first known examples of genuinely
heterotic modular invariants based on tensor products of holomorphic cfts which are
not free fields.

In this talk, we consider fermionic realizations where all of the right-moving world-
sheet fermions are Majorana-Weyl, with periodic or anti-periodic boundary conditions
alone. We use the conventional spin—% generator of the (1,0) world-sheet supersym-
metry
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where the index pu=1,2 sums over the two transverse dimensions in D=4, and we
work in light-cone gauge!. The N=1 spacetime supersymmetry charges are embed-
ded in the spin structure of eight right-moving fermions, which are paired into four
Weyl fermions as follows, 11 + i)s, Y3 + ¥3k13, k=1,3,5. The remaining 12 right-
movers can be Weyl, Ising, or chiral Ising fermions. Left-moving Weyl fermions are
unrestricted by world-sheet supersymmetry and are allowed to satisfy any rational
boundary condition.

To enlarge the scope of conventional free fermionization we make two modifica-
tions. We allow overlapping embeddings of the current algebra weights into fermionic
charges, Q%, where i labels individual Weyl fermions, and G and G’ are commuting
current algebras,
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Thus, in many of our conformal field theory solutions the group weights of the hid-
den and the visible gauge groups actually overlap! This has no bearing on spacetime
physics or equivalently on the conformal field theory, but is simply a trick that allows
a free fermionic representation for many new modular invariant partition functions.
In addition to conventional fermion bilinear currents we also consider twist field real-
izations. These are obtained by tensoring together 4, 8, 12, or 16 dimension 1—16 spin
operators with a free field operator so as to give holomorphic operators of dimension
(0, 1), for example,

Jigni(2) = Jprec(2) (0f 000l + 0705007 ) (3)

where i#j#k#l. In fact, it is often the case that the currents in the Cartan sub-
algebra are not of the conventional Neveu-Schwarz fermion bilinear form. Enlarg-
ing the class of allowed embeddings considerably reduces the ad-hoc restrictions on
groups/weights obtained in conventional free fermionic solutions 3.

3. N=4 Models of reduced rank

It is helpful to begin a general study of new cft solutions by considering cases
with extended spacetime supersymmetry. We therefore consider the possibility of ex-



act solutions to string theory beyond those obtained by dimensional reduction from
a ten-dimensional superstring. Toroidal compactification of the ten-dimensional N=1
heterotic string to six (four) dimensions results in a low-energy effective N=2 (N=4)
supergravity coupled to 20 (22) abelian vector multiplets, giving a total of 24 (28)
abelian vector gauge fields with gauge group (U(1))** ((U(1))?®), respectively. Four
(six) of these abelian multiplets are contained within the N=2 (N=4) supergravity
multiplets. At enhanced symmetry points in the moduli space the abelian group
(U(1))?° ((U(1))*) is enlarged to a simply-laced group of rank 20 (22). The low
energy field theory limit of such a solution has maximally extended spacetime super-
symmetry. Since all of the elementary scalars appear in the adjoint representation
of the gauge group, symmetry breaking via the Higgs mechanism is only adequate in
describing the moduli space of vacua with a fized number of abelian multiplets.

We will show that there exist maximally supersymmetric vacua with four-dimensional
Lorentz invariance that are not obtained by toroidal compactification of a ten-dimensional
heterotic string. The total number of abelian vector multiplets in the four-dimensional
theory can be reduced to just siz, namely, those contained within the N=4 supersym-
metry algebra. This is consistent with known theorems on the world-sheet realizations
of extended spacetime supersymmetry in string theory?. In the world-sheet descrip-
tion of an N=4 supersymmetric solution of the heterotic string in four dimensions, the
internal right moving superconformal field theory of central charge cg=9 is required
to be composed of nine free bosons. A reduction of the rank of the low-energy gauge
group in an N=4 solution implies that the internal left-moving conformal field theory
of central charge ¢, =22 is not entirely composed of free bosons. This is unlike the
4D toroidal compactifications described by Narain ® where both right and left moving
conformal field theories are free boson theories.

As a consequence, it will also be possible to realize non-simply-laced gauge sym-
metry consistent with the maximally extended supersymmetries. We will construct
such solutions using the fermionization methods described above. They are examples
of (4,0) rational superconformal field theories, where the underlying chiral algebras
also have a world-sheet fermionic realization. In order to have an unambiguous iden-
tification of the vertex operator algebra in this construction, it is essential to have
explicit knowledge of the correlators of the real fermion conformal field theories 2.

Eliminating longitudinal and time-like modes, the number of transverse degrees of
freedom describing a vacuum with D-dimensional Lorentz invariance is (cg, cL):(% .
(D —2),D — 2)+ (¢t ™). In this class of exact solutions, the internal degrees
of freedom have an equivalent world-sheet fermionic realization with (3- (10 — D), 2 -
(26— D)) Majorana-Weyl fermions. string theory which embeds a specified low-energy
matter content.

We restrict ourselves to fermionic realizations where the world-sheet fermions are
Majorana-Weyl, with periodic or anti-periodic boundary conditions only. All of the
right-moving world-sheet fermions will be paired into Weyl fermions, or equivalently



free bosons, as required by the extended spacetime supersymmetry. A free boson
conformal field theory implies, with no loss of generality, the existence of an abelian
current in the right-moving superconformal field theory. In maximally supersymmet-
ric solutions the allowed right-moving chiral algebras are, therefore, restricted to level
one simply-laced affine Lie algebras ® 4. This follows from the fact that for a Lie
algebra with roots of equal length, the central charge of the level one realization also
equals the rank of the algebra, i.e., the number of abelian currents.

A free fermionic realization with n Weyl (complex) fermions exists for any of the
following affine Lie algebras: SO(2n), U(n), and Eg (for n=8), in addition to the
abelian algebra (U(1))". In toroidal compactifications that have an equivalent free
fermionic realization these properties also extend to the allowed left-moving chiral
algebras and, hence, to the observed non-abelian gauge symmetry in these solutions.

Incorporating chiral Majorana fermion world-sheet fields in the left-moving in-
ternal conformal field theory will enable us to construct maximally supersymmetric
solutions that embed non-simply-laced gauge symmetry, i.e., gauge groups with roots
of unequal length. Such solutions necessarily lie in a moduli space where the gauge
group has rank < 28. This is evident from the formula for the central charge of an

affine Lie algebra:

_ K DszG) ()

k+h

where the dual Coxeter number, &, of the non-simply-laced algebras, SO(2n + 1),
Sp(2n), Gy and Fy are, respectively, 2n — 1, n+ 1, 4, and 9. Note that the dimension
of the dual algebras SO(2n+1) and Sp(2n) are identical, given by Dim(G)=n(2n+1).
However, unlike the simply-laced algebras, the central charge does not equal the rank
of the group even at level k=1, and does not, in fact, coincide for the algebra and
its dual. Chiral Majorana fermion realizations exist for all of the non-simply-laced
affine algebras. Extending a world-sheet fermionic realization of the generators of
the affine algebra to a (4,0) superconformal field theory that is an exact solution to
heterotic string theory, however, requires consistency with modular invariance of the
one-loop vacuum amplitude and with world-sheet supersymmetry 3. These conditions
can be quite restrictive and, in fact, preclude N=1 supersymmetric solutions in ten
spacetime dimensions with non-simply-laced gauge symmetry.

Now consider the possibility of non-simply-laced gauge symmetry in D=4. For
example, an affine realization of the rank ten algebra Sp(20) at level one requires
central charge c:%. Appending nine real fermions with C:%, which form a realization
of the non-simply-laced algebra SO(9), gives ¢=22, making this a plausible candidate
for the gauge group of an N=4 spacetime supersymmetric solution in D=4. It is not
difficult to verify the existence of such a solution using its fermionic realization.

We will adopt the notation of [2][3]. The tree level spectrum is described by the
one-loop vacuum amplitude, which sums over sectors labelled by the associated spin

structure of the world-sheet fermions. The N=4 spacetime supersymmetry charges are



embedded in the spin-structure of eight right-moving Majorana-Weyl fermions, which
we will label ¢, u=1,2, and ¢!, =3k, k=1, ---, 6. The first two right-movers carry a
(transverse) spacetime index. In sectors contributing spacetime bosonic and fermionic
components of an N=4 supermultiplet, these eight fermions are, respectively, Neveu-
Schwarz and Ramond. In particular the untwisted sector, U, in which all of the world-
sheet fermions are Neveu-Schwarz, contributes the bosonic components of the N=4
supergravity multiplet in four dimensions. It also contributes six massless abelian
multiplets, each associated with an internal right-moving Weyl fermion: 3z +
Wskra, Yapr2 + WPsp45, with £1,3,5.

The remaining massless spectrum is arranged into D=4 N=4 Yang-Mills super-
multiplets, each containing 6 spacetime vector components, 8 spinor components,
and 2 scalar components. All of the gauge bosons of SO(9) are contributed by the
untwisted sector and correspond to fermion bilinear pairs. The sector-wise decompo-
sition of the 210 states in the adjoint representation of Sp(20) is most easily described
by the regular embedding:

Sp(20) D (SO(4))> ~ (SU(2))" (5)

The untwisted sector, U, contributes states corresponding to all 30 long roots, and a
subset (20) of the short roots of Sp(20). These states transform, respectively, in the
adjoint (10 copies of a 3) and the spinor (10 copies of a doublet) representation of
its (SU(2))'° sub-group. The states are identified by fermionic charge: the roots and
weights of the rank ten sub-group are embedded in the fermionic charge of ten Weyl
fermions. In the fermionic construction these are obtained by pairing 20 Majorana-
Weyl left-movers, 19 11(2) + itho2(2)=N\(2), [=0, - - - 9.

The remaining 16 left-moving Majorana-Weyl fermions are unpaired fermions.
The vertex operator construction for an SO(2n + 1) algebra requires a single un-
paired Majorana fermion, in addition to n Weyl fermions. The long-root lattice
of SO(2n + 1) coincides with the root-lattice of SO(2n), AL(B,)=D,. Thus the
n-(2n—1) Majorana-Weyl fermion bilinears are the currents corresponding to long
roots, while those corresponding to the short roots are the 2n bilinears containing
the single real fermion. In this example, of the 202& Neveu-Schwarz fermion bilinear
currents contributed by the untwisted sector only % remain after GSO projection
from four twisted sectors, 77 --- 74, in which some of the fermions are Ramond. The
untwisted sector therefore contributes a total of 400 states: the eight bosonic com-
ponents of an N=1 supermultiplet transforming in the adjoint representation of the
non-simply-laced group (SO(5))°.

Extension of this vertex operator construction to a symplectic current algebra re-
quires conformal dimension (hg, hy)=(0, 1) operators corresponding to the additional
short roots. These are contributed by the twisted sectors. The currents are composite
operators constructed out of sixteen twist fields, i.e., dimension (0, ;5) operators in
the Majorana-Weyl fermion field theory.



The twisted sectors, 7;, were chosen so as to generate the necessary projection on
the untwisted sector. They will simultaenously determine the internal right-moving
chiral algebra: in this solution, the twelve (internal) Majorana fermions are divided
into blocks of four, either all Neveu-Schwarz, or all Ramond, in every sector of the
Hilbert space. Thus the underlying right-moving chiral algebra is (SO(4))3. Possible
twists are, of course, subject to constraints from modular invariance and world-sheet
supersymmetry. Given a set of valid 7;, modular invariance of the one-loop vacuum
amplitude automatically generates additional twisted sectors in the Hilbert space.
Thus, in this example, the 7;+7;, i#7, also contribute massless states in the spectrum.
Each of the ten twisted sectors contributes 128 states: 8 bosonic components of an
N=4 supermultiplet transforming in the 16 dimensional spinor representation of an
(SU(2))* sub-group. Sp(20) has ten distinct (SU(2))* sub-groups, each corresponding
to a different twisted sector. Combining the 400 untwisted sector states with these
1280 states gives all 8-210 bosonic components of an N=4 supermultiplet transforming
in the adjoint representation of Sp(20).

It is straightforward to construct the twisted sector vertex operator corresponding
to a given weight. We will use the bosonic realization for the corresponding free field
vertex operator. A state transforming as a spinor weight, o, of (SU(2))* corresponds
to a dimension (0, 3) operator, jgee(z), obtained by bosonization:

NN = 061 Jieo(2) = Cla) e (6)
where a - a=1, [=0, --- 9, and the C’(oz) are suitable cocycle operators. This free
field vertex operator must be dressed by four pseudo-Weyl fermion spin fields, O’li,
Il =1, --- 4, so as to give a current. These spin fields are identified by pseudo-

complexifying, i.e., pairing, the real fermions in a twisted sector 3. Thus:

Jijkt(2) = Jree(2) (afa;-ra,jaf + O';O';O’,;O’f) (7)
where @ # j # k # [, giving a dimension (0, 1) twisted sector current. Verification of
the vertex operator algebra for Sp(20) is now straightforward.

This completes the discussion of the massless spectrum of an exactly solvable
heterotic N=4 enhanced symmetry point with gauge group Sp(20)xSO(9) in four
dimensions. The string theory it belongs to has only twenty abelian vector multiplets,
or rank (6, 14), at generic points in the moduli space. We have constructed fermionic
realizations of a large range of four-dimensional N=4 supersymmetric solutions to the
heterotic string with semi-simple groups of varying rank, containing both simply-laced
and non-simply-laced factors, and with part or all of the gauge symmetry realized at
higher level. It should be stressed that four-dimensional N=4 supersymmetry need
not arise via toroidal compactification from a higher dimensional theory. The clearest
evidence for this is the existence of an N=4 four-dimensional solution where the gauge
symmetry is reduced to the minimum consistent with the world-sheet supersymmetry



constraints. Its fermionic realization uses a spin structure block of 44 left-moving real
fermions. The number of abelian vector multiplets in this N=4 theory is just siz.

4. Conclusions

The development of fermionization techniques has enabled the systematic sam-
pling of new classes of exact solutions to string theory. It is important to focus on
those aspects of the solutions that have generic implications for our understanding
of string theory. Consider, for example, our experience with (4,0) solutions as dis-
cussed above. The particular choices of affine Lie group, rank, or Kac-Moody level,
obtained in the fermionic solutions should not be emphasized. On the other hand
the existence of maximally supersymmetric theories with distinct target space duality
groups, and the fact that non-simply-laced and simply-laced gauge groups enter on
an equal footing, are generic observations relevant for further study.

Similar considerations will apply when we begin a systematic exploration of (2,0)
solutions. Recent interest in (2,0) constructions is in part due to the difficulty in
obtaining low numbers of generation-anti-generation pairs in the simpler class of (2, 2)
compactifications. Despite technical developments, the few examples of semi-realistic
models available to the string phenomenologist have remained those obtained a while
ago in the Z3 orbifold and free fermionic constructions. A generic feature of such
models is the presence of extra low-energy matter, at least some of which survives
to accelerator energies. It is intriguing that every semi-realistic example known to
date also has a tree-level anomalous U(1). However, it is not known whether these
are essential features of a semi-realistic heterotic vacuum in which all of the MSSM
particle content is assumed to come from weak-coupling string states.

For meaningful string phenomenology, it is essential therefore to begin with a
broad sample of semi-realistic three generation (0,2) models. Although a study of
orbifold, or otherwise special, points of (0,2) theories is of limited scope in addressing
many fundamental questions in superstring phenomenology, such as vacuum selection
and the vanishing of the cosmological constant, it appears worthwhile to enlarge
the sample of three generation models. Such examples continue to serve as useful
pedagogical models for weak coupling string phenomenology. We will address this
issue in forthcoming work.
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