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ABSTRACT

We briefly report the general form of the electromagnetic duality group I'p
for an arbitrary N = 2 rigidly supersymmetric SU(T‘—|— 1) gauge theory, which
extends previous explicit constructions for the r = 1, 2 cases. The results are
obtained by a method that had proven useful in the past to study Calabi-Yau
moduli spaces for more than one parameter, and exploits the relation between
monodromy and braid groups for algebraic surfaces .

A better grasp on nonperturbative aspects of supersymmetric gauge theories has
been reached after the observation that the quantum moduli space for the abelian
phase of a (G invariant N = 2 rigid gauge theory can be characterized in terms of
a class of genus r = rank G hyperelliptic Riemann surfaces 3,., parametrized by
r complex moduli, and informations on the electromagnetic duality symmetries of
the theory can be extracted from the monodromy group of ¥, =3,

More precisely, the electromagnetic duality group I'p can be inferred from the
monodromy of the symplectic vector V = (X%, F4), whose components can be
viewed as the periods of the holomorphic one-form®

w= X"+ Fap*, (1)

along a basis (a4, 3%) of the 2r homology cycles of .
A deeper understanding of the relation between duality and monodromy, to-
gether with important clues on how to generalize the above theory to the gravi-

tationally coupled case and apply it to superstrings*—17

, relies on the properties
of N=2 supersymmetry, which seems to present just the right amount of compli-
cation. Although it is more subtle than N=4!% because of the presence of both
perturbative and non-perturbative phenomena, at the same time it still presents
a particularly restricted structure, crucial towards its solvability, that is known as
“special geometry” 19721,

The dynamics of an N = 2 theory is fully encoded in the holomorphic prepo-
tential F'(X4), function of the moduli coordinates X4 , A =1,...,r. While per-
turbative monodromies derive from the unique one-loop perturbative correction®?
to F'(X), non-perturbative monodromies, associated to points where monopoles or

dyons become massless, correspond to an infinite sum of instanton contributions.



It was recognized* that the monodromy group I's € Sp(2,Z) found by Seiberg
and Witten® for the case G = SU(2) arises from Picard-Fuchs equations satisfied
by the holomorphic vector one-form U; = (9;X4,0;F4) (i = 1,...,r) which can be
regarded as differential identities for “rigid special geometry”. For generic r, duality

transformations act on the sections as®

X\ (A B\[(X
(5)-(c ) (¥) @
A B . . . .
where ( c D) € Sp(2r,Z), leaving invariant the Kéhler potential

Kol — (X" Fy - XAF,) . (3)

JFrom the point of view of the N = 2 lagrangian, it can be shown that the theory
is left invariant for C = B = 0, while for B = 0 one has perturbative and for B # 0
non perturbative dualities®.

The above considerations brought immediately to mind the similar scenario en-
countered in the study of Calabi-Yau moduli space??, where however the N = 2
supersymmetry was local?!.

.From the point of view of the counting of degrees of freedom, in the coupling to
gravity of the gauge theory on a group G broken to U(1)" for generic values of the
moduli, there is always an additional U (1) factor associated to the graviphoton field
G i, corresponding to a symplectic section X O which is responsible for a drastic
change in the geometry of moduli space. The main difference is that, in the local
case, the moduli space is a Kédhler-Hodge manifold rather than simply Kéhler (that
is, it possesses an extra U(1) connection), with Kéhler potential given by

Klocal — —log i(yAFA—XAFA) , A:O,l,...,?" (4)

and three-form cohomology substitutes one-form cohomology®. Moreover, when
dealing with those gauge theories that come as low energy effective field theories of
strings one must also consider the extra U(1) factor coming from B,,;, the vector
partner of the dilaton-axion multiplet.

However, mutatis mutandis, it was quite natural to suppose that in the gravity
coupled theory, the special geometry of the moduli space of an appropriate Calabi-
Yau threefold with hodge number ho; = 7 4+ 1 should replace the rigid special
geometry of the moduli space of the hyperelliptic Riemann surfaces ¥, 4216,

For a Calabi—Yau manifold defined as the vanishing locus of a certain algebraic
surface W(&; u;) in a projective space, duality and monodromy groups are related
quite generally by the relation?*

FD:FM X FW (5)



that is, the duality group is given by the semi-direct product of the monodromy
group and the group I'yy which contains the symmetries of WW. These consist of
those linear transformations ¥ — M of the quasi-homogeneous coordinates Z such
that

WM& u;) = f(u)W(F ¢(u) (6)

where ¢(u) is a generally non-linear transformation of the moduli u; and f(u) is a
compensating overall rescaling of WW. Thus, it is clear that finding the monodromy
group does not give the whole story. However, an important fact is that, due to the
different form of the Kéhler potential for local and rigid theories, in the latters only
those trasformations of the defining polynomial of ¥, corresponding to unimodular
rescaling factors, rather than the full I's , are true symmetries of the theory 2°:16
(they are actually interpreted as R-symmetries?).

One expects that the right Calabi-Yau describing the moduli space of the grav-
itationally coupled theories must embed in some way the surfaces ¥, of the rigid
case, their monodromy and R-symmetry group?®.

Below, we focus on the rigid theories and and on the specific problem of deter-
mining I'p, and we briefly display an efficient method for the construction of the
monodromy group I'p/(r) € Sp(2r;Z) for the subclass X, of hyperelliptic surfaces
for the SU(r + 1) gauge theory. Explicitly, they have been shown to be given by?3

r
’U)2 — [ZrJrl - § w; LT
i=1

where the coefficients u; are the moduli and A is the dynamically generated scale.

2
o A2r+2 . (7)

In our approach, the required monodromy group is selected as a particular subgroup
of the monodromy group of the most generic hyperelliptic surface W, of genus r

w? = Popyg)(2) =272 400 22 4 eorgn 24 corgn = 272z = N) , (8)

where only 2r — 1 of the ¢ are independent moduli. The method presented here
yields a complete solution for any SU(r 4+ 1) and is based on some tools that
were introduced in 27. Our results can be compared with those recently obtained
in%®| where the particular case of SU(3) has been thoroughly discussed and where
the corresponding periods of the theory have been obtained. The monodromy for
SO(2r + 1) gauge theories was studied in 2°.

The basic observation is that the monodromy group for W, is given by a 2r-
dimensional representation of B(2r + 2), the braid group acting on 2r + 2 strands,
on the homology basis of W,. . Indeed, the monodromy group of a p-fold M is given
by the representation on the homology basis of the p-fold of the fundamental group
m1 of the complement of the bifurcation set of M. For the case M = W,, where



W, is described by the polynomial in Eq. (7), denoting by Q(*"~2) the bifurcation
set of Eq. (7), and by C the base point, we have

T (CPP =Y —Qr=2.C) = B(2r +2) , (9)

since B(2r + 2) is the fundamental group of the space of polynomials of degree
2r + 2 with no multiple roots. The bifurcation set of a polynomial is given by
the submanifold in the moduli space {c1,...,co,—1} where two or more roots A,
coincide.

The generators t; of B(2r + 2) correspond to the exchange of the i-th and the
1 + 1-th strand and satisfy the relations

tititit; = tit1titiva o (10)
titj:tjti |Z—j|22
In particular, to each generator t; € m; = B(2r + 2) there corresponds a loop in the
moduli space which exchanges the roots \;, \;11 of the polynomial and a vanishing
cycle of W,.. For a generic hyperelliptic surface any two roots can be exchanged by
a suitable word in the generators ;.
Let us now consider the particular subclass of hyperelliptic surfaces ¥, € W,.
Their peculiarity is that they can be written in a factorized form

Prorya)(2) = Py 1y (2) = Py = [Pirsny (2) + Py (2)] [Pirsn)(2) = Pay(2)] 5 (11)

where P, 1)(z) and Py are two polynomials respectively of degree  + 1 and 1.
Altogether they contain r + 3 parameters that can be identified with the r 41 roots
of P41y and the two coefficients of Py,

Poyny(2) =2 (2 = X)) , Pay(2) = mz + po - (12)

Furthermore, three conditions can be imposed to fix fractional linear transforma-

tions,
r+1

Z)\ZZO y ,u1:O y MOZAT+1 (13)
i=1

so that to leave effectively only r parameters. Of course other gauge choices would
be completely equivalent, and may actually be convenient'®. Corresponding to the

factorization in Eq. (11) we have a natural splitting of the 2r + 2 roots of Pa, o)
into two sets

{)\1,...,)\,«+1} and {)\r+25---7)\2r+2} . (14)



It is obvious that for the particular surface ¥, the fundamental group 7; mentioned
above will be generated by those elements ¢; € B(2r+2) which respect the splitting
in Eq. (14), that is

{t1, oot 2 trgoy ooy topgo, T = (tita -+ torgr) T} (15)

where T corresponds to the exchange of the two sets of roots (¢; - - - t2, 41 corresponds
to the cyclic permutation {1, Ag, ..., Aory2} — {2, A3, .., Aoryo, A1}). We con-
clude that the fundamental group of the hyperelliptic surface ¥, is generated by
the elements in Eq. (15). The required monodromy group I'j/[r] is therefore given
by the representation on the homology group H;(X,,Z) of the generators (15). At
this point the strategy for computing the explicit monodromy of ¥, is clear: one
first obtains the monodromy group of W, as a representation M (t;) of the B(2r+2)
generators on the homology basis of ¥,.. Then the monodromy group of 3, is given
by the subgroup generated by

{M(t1), ..., M(t,), M*(trs1), M(tria), - ., M(tary1), M(T)} (16)

Let us then construct the monodromy group of W, as a representation of B(2r+
2) on Hy(W,;Z). We first choose a basis of cycles (A?, Br) on the cut z-plane such
that

ATNnA =B NB;=0, A'nB;=-B;nA' =6, (I,J=1,...,r) (17)

so that the homology intersection form C' takes the canonical form

0o 1,
c- (5 %) (18)
Actually we may take the cycles A? to encircle the couple of roots (Aar, Aari1),
while the Bj cycles encircle the set of roots (A1, A2, ..., A2r). To a generic element
t € B(2r + 2) we may associate the corresponding vanishing cycle L of Hy(W,,Z),
say
L = (ng,ny,) (19)

where (n$,nl)) are the components of L with respect to the basis (Af, By). Using

the Picard-Lefschetz formula?®

d—0—(0UL)L (20)
which represents the transformation induced on the homology by the vanishing cycle
L corresponding to the element ¢ € B(2r + 2), it is easy to see that in the given
basis the corresponding monodromy matrix M (L) is given by:

(21)

M(L):]l+L®(C’L)E<11+ne®nm e ® e )

T @ i 1 — il @



Denoting by L® the homology element associated to t; (i = 1,...,2r + 2), their
explicit form is found by imposing the braid relations (9) on M (L(®), which yield
the constraints

LWOTorG) — i —j] >2 -

LOTop+Y) =1 | (22)
The solution can be written as follows

L1 = (é} — é}_l, 6)

L(29) — 6; _Z. =1,...,

( i.) J r (23)

)
Le2) = (G;é + -+ &),

—

where €; is an orthonormal basis in R" (€p = 0). Notice that the electric charges of
the odd-numbered L and the magnetic charges of the even-numbered L are given

28 The restriction

in terms of the roots and fundamental weights of SU(r + 1)
of the braid group generated by M (L®) to the subgroup given in Eq. (16) (with
(M(L®) = M(t;)) gives the monodromy group of the hyperelliptic curves 3, .

We stress that our construction selects uniquely the possible entries of L() =
(ﬁfgi), ﬁ%)), corresponding to the values of the allowed electric and magnetic charges
of any SU(r + 1) gauge theory.

Finally, we comment on the R-symmetry group pertaining to the rigid theory,
that is on the I'yy part of the duality group'®. The defining polynomial of a generic
hyperelliptic surface is known to admit a symmetry group that is isomorphic to the
dihedral group Ds, 2, defining by the following relations on two generators A, B

A2 =1 B =1, (AB)*=1. (24)

However, for the specific subclass ¥,., all that survives is the cyclic subgroup Zs, 12 €
Dy, 5 generated by A. These symmetries, together with I'y; found above, yield the
full electromagnetic duality group.

We note that all we needed to apply this method was the defining equation of
the relevant algebraic curve, and thus it is suitable to be applied to other cases in
which such curve can be ultimately expressed as a polynomial in a single variable.

The restrictions found on the possible values of the electric and magnetic quan-
tum numbers could be used in the general expression for the central charge for BPS
states!

| Z |=| n XA —nd, Fa | (25)



to determine the exact spectrum of the theory.
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