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ABSTRACT

By considering a (partial) topological twisting of supersymmetric Yang-Mills compactified

on a 2d space with ‘t Hooft magnetic flux turned on we obtain a supersymmetric σ-model

in 2 dimensions. For N = 4 SYM it maps S-duality to T -duality for σ-models on moduli

space of solutions to Hitchin equations.

1. Introduction

One of the main sources of insights into the dynamics of 4 dimensional quantum field

theories comes from analogies with simpler 2 dimensional quantum field theories. It is the

aim of this paper to make this analogy more precise in the context of supersymmetric gauge

theories in 4 dimensions and special classes of supersymmetric σ-models in 2 dimensions.

In the context of N = 4 YM, this reduction allows us to map S-duality to T -duality of

certain σ-models, thus relating electric-magnetic duality to momentum-winding duality of

σ-models.

The basic idea is rather simple. We consider a Euclidean quantum field theory on a

product of two Riemann surfaces Σ × C in the limit where the size of one of them, say

C shrinks to zero. This gives rise to a quantum field theory on Σ. The reduction of 4d

Yang-Mill theory to 2d is in general very complicated due to the fact that different regimes

of field configurations of the 4d theory result in different 2d effective theories which are

related to each other in a complicated way *. For four dimensional gauge theories a single

regime of field configuration can be singled out by restricting attention to the sectors

of path integral with non-trivial ‘t Hooft magnetic flux on C (which thus avoid having

reducible gauge connections).

* A similar problem was considered by the Verlinde brothers.1



Starting from supersymmetric quantum field theories in 4d, we expect to get a super-

symmetric theory in 2d. This is only the case when C is a torus with periodic boundary

conditions. In the case C is a torus, turning on the flux unfortunately leads to a trivial

quantum field theory on Σ with all the degrees of freedom frozen out. However one can

consider a topologically twisted version of the 4d theory, which does give rise to a non-

trivial supersymmetric 2d theory for any choice of C with genus greater than 1. In fact

we can consider a fully twisted topological theory in 4 dimensions giving rise to a topo-

logical σ-model in 2 dimensions or we can consider partial twisting of the 4 dimensional

theory only along the C directions and obtain an untwisted supersymmetric σ-model on

Σ. Each twisting has its virtue: The fully twisted version is useful in that the topological

amplitudes in 4d, being independent of the size of C, are directly related to topological

amplitudes of the σ-model in 2d. The partially twisted theory, on the other hand, even

though it depends on the size of C, carries more information about non-topological aspects

of the 4d theory **. We will consider both twistings in this paper.

Let us first consider N = 1 supersymmetric theory. The manifold M4 has a product

structure and therefore the holonomy group is reduced to U(1)Σ×U(1)C , where each U(1)

is the holonomy of the corresponding surface. The U(1) charges of the supersymmetry

generator is given by (± 1
2 ,± 1

2 ). In addition the supercharge carries an R charge ±1

(which with an appropriate choice of N = 1 theories with matter is anomaly free) which

is correlated with the chirality of the spinor (even or odd number of minus signs in their

U(1)Σ × U(1)C charge). If we twist the U(1)C by adding −R/2 to it, we find that there

are two components of the supersymmetry which become spin 0 in the C direction and are

both of the form (+ 1
2 , 0). We thus end up with a (2, 0) supersymmetric theory on Σ for

arbitrary choice of C with genus greater than 1. If we had in addition twisted the U(1)Σ

by adding −R/2 we would have obtained a topologically twisted (2, 0) theory in 2d. With

standard twistings, in the case of N = 2 theories the same construction leads to a (2, 2),

and for N = 4 it leads to a (4, 4) supersymmetric theory on Σ. In this paper we will mostly

concentrate on the case of pure N = 4 YM theory. Extension of these to N = 1 and to

N = 2 theories with matter are presently under consideration.

** A possible relation between the dynamics of the 4d supersymmetric theories and those
of corresponding σ-models has been conjectured in Johansen.2



2. Reduction

We now consider this reduction in more detail. Let us first concentrate on pure YM

theory on a four-dimensional manifold M4, which has a product structure M4 = Σ×C. Let

us choose the metric on this manifold to be block diagonal g = gΣ ⊕ gC , where gΣ (gC) is

the metric on Σ (C). The YM connection can be decomposed into two pieces A = AΣ+AC ,

where AΣ (AC) is the component of A along Σ (C). To discuss the reduction to 2d let us

rescale the metric gC → εgC on C. Under this transformation different terms in the action

scale differently

S =
1

4e2

∫
M4

Tr
[
1
ε
FC ∧ ∗FC + 2(dCAΣ −DΣAC) ∧ ∗(dCAΣ −DΣAC)

+ εFΣ ∧ ∗FΣ

]
.

(2.1)

Operation ∗ is defined with respect to unrescaled metric gΣ ⊕ gC and DΣ = dΣ − i[AΣ, ·].
In the limit ε → 0 the first term in the action enforces the component AC to be flat

(FC = 0), while the second term gives rise to the σ-model action. The last term produces

the corrections of order O(ε) that are irrelevant in the limit ε → 0.

We will denote the moduli space of flat connections on C by M(C). In order to

specify the flat connection AC on Σ×C one should specify a map X : Σ →M(C). In this

notation the flat connection becomes

AC(w, w̄, z, z̄) = AC(w, w̄|X(z, z̄)), (2.2)

where z, z̄ (w, w̄) are complex coordinates on Σ (C).

The flatness condition FC = 0 implies that operator DC is nilpotent, D2
C = 0. The

tangent space to the moduli space of flat connection M(C) is given by DC cohomol-

ogy H1(C,G). We will always choose representatives that satisfy harmonicity condition

Dµ
Cαµ = 0, which is just the gauge fixing condition. The variation of the flat connection

δAC can be decomposed with respect to some basis {αI} ⊂ H1(C,G) modulo the gauge

transformation
∂AC

∂XI
= αI + DCEI (2.3)

where E defines the connection on the moduli spaceM(C) (similar construction appears in

Harvey and Strominger.3 The moduli space of flat connections M(C) is a Kähler manifold.

It is convenient to use the complex coordinates Xi and X k̄ on M.



The action (2.1) is essentially quadratic in AΣ, ignoring the terms of order O(ε). More-

over the action does not depend on the derivatives of AΣ with respect to the coordinates

on Σ. Hence AΣ plays the role of an auxiliary field. Therefore one can attempt to integrate

out AΣ. This can be done if the connection on C is irreducible, which would allow us to

invert the Laplacian DwDw on C:

AΣ = Ei∂ΣXi + Ek̄∂ΣX k̄ . (2.4)

If the gauge field on C is reducible the Laplacian has zero modes which would give rise

to additional degrees of freedom on Σ (and in particular dropping the O(ε) terms in (2.1)

cannot be justified in such cases). These additional degrees of freedom are described by

residual gauge theory on Σ. Moreover if the dimension of the residual gauge symmetry

jumps as we move on M the resulting 2d theory on Σ would be very complicated. This

happens for example if we consider flat SU(N) gauge fields on C. However if we consider

SU(N)/ZN gauge theory and restrict the path-integral to the subsector where we turn on

a non-trivial ‘t Hooft magnetic flux on C, then the connection on C is irreducible for all

M, the gauge group is completely broken and AΣ can be integrated out. We will mainly

concentrate on this case, but comment about some aspects of the more general case below.

Substituting the flat connection AC and the expression for AΣ (eq. (2.4)) into the

action (2.1) one gets the σ-model action of the standard form

S =
1

2e2

∫
Σ

d2z Gik̄(∂zX
i∂̄z̄X

k̄ + ∂̄z̄X
i∂zX

k̄) . (2.5)

It is also easy to see that turning on the θ angle for the YM is equivalent to turning on a

B−field in the direction of the Kähler class. In this way we see that τ = i/4πe2 + θ/2π is

now playing the role of the complexified Kähler modulus of this σ-model.

The moduli space of holomorphic instantons for this σ-model can be shown to coincide4

with the the moduli space of self-dual connections of the 4d YM theory in the limit ε → 0.

In particular one can view anti-self-dual connections as holomorphic connections (whose

curvature vanish in the (2, 0) and (0, 2) directions) which satisfy gij̄Fij̄ = 0. The latter

condition in the limit ε → 0 becomes FC = 0, whereas the holomorphicity of the connection

is equivalent to holomorphic instantons of the 2d theory.

Now consider the dimensional reduction of the topological YM theory which is the

twisted version of the N = 2 d = 4 supersymmetric Yang-Mills theory.5 In this case one

ends up with the (2, 2) supersymmetric σ-model on M. It is convenient to formulate this



model in the complex notation. In the bosonic sector of N = 2 SYM theory there is a scalar

field φ in addition to Yang-Mills connection A. The fermionic fields are the following: a

scalar η, a self-dual two form that can be decomposed to a scalar λ and (2, 0) and (0, 2)

forms λzw and λz̄w̄, and a 1-form with the components χz, χw, χz̄, χw̄. Since the action is

linear in fermionic fields λ, η, χz and χz̄, one can integrate them out. Such an integration

gives rise to the following constraints: Dwχw̄ = 0, Dw̄χw = 0, Dwλw̄z̄ = 0, Dw̄λwz = 0.

These fields are cotangent to the moduli space M(C) of flat connections on C. Therefore

in the basis αiw̄, αk̄w they can be represented as linear combinations

χw̄ = χiαw̄i, χw = χk̄αwk̄, λw̄z̄ = ρi
z̄αw̄i, λwz = ρk̄

zαwk̄, (2.6)

where χi, χk̄, ρi
z̄ and ρk̄

z are two dimensional fermionic fields on Σ. The action is also

quadratic in scalar fields φ and φ̄ and does not depend on the derivatives of these fields

with respect to coordinates on Σ (in the leading order ε → 0). Therefore one can just solve

the equations of motion for φ and φ̄.

Similar to the above non-supersymmetric model we integrate over components AΣ

of the gauge connection. Integration over the field φ and AΣ results in a four-fermionic

interaction in the Lagrangian.

At this stage, it is already clear that we get a supersymmetric twisted σ-model on M
(A model) with the standard action*

S =
1
e2

∫
Σ

d2z

[
Gik̄(

1
2
∂zX

i∂̄z̄X
k̄ +

1
2
∂̄z̄X

i∂zX
k̄ + iρk̄

zDz̄χ
i + iρi

z̄Dzχ
k̄)

−Rik̄jl̄ρ
i
z̄ρ

k̄
zχjχl̄

]
.

(2.7)

The anomaly in the fermion number is the same for the original 4d topological theory

and for the σ-model. In the case of SU(N), in particular the c1(M) = Nh2 (where

h2 ∈ H2(M,Z)), in accord with the U(1) ‘ghost’ number violation for the N = 2 SU(N)

theory.

Consider now the dimensional reduction of the N = 4 SYM theory. It is convenient to

consider the partially-twisted version of this theory. In the complex notation the bosonic

content of the model is the following: the gauge field A, two complex scalar bosons φ (φ̄)

* The A twisting is inherited from four dimensions. If we consider the partial twisting
of the four dimensional theory described above, we would obtain the untwisted σ-model
on M.6



and ϕ (ϕ̄) and (1, 0) and (0, 1) forms on C denoted by φw and φw̄ respectively**. These
non-scalar bosonic fields appear because twisting is performed with conserved current that
includes a bosonic contribution. The fermionic fields are doublets with respect to the
SU(2) global group which is the unbroken subgroup of SU(4) corresponding to N = 4
supersymmetry (the BRST charges are doublets with respect to this global group). There
are the following fermionic fields: two scalars (on C) ηa

− and λa
−, (1, 0) and (0, 1) forms

λa
w− and λ̄a

w̄−, two vectors represented (after contracting with metric) by χa
w+, χ̄a

w̄+, and
additional scalars on C denoted by χa

+ and χ̄a
+. Here the indices a = 1, 2 correspond to

the doublet representation of the unbroken SU(2) global group, the vector indices w and
w̄ correspond to the surface C, and the indices ± stand for (right-) left-handed spinors
indices on Σ.

The dimensional reduction here is slightly different from that of above cases in the
following respects. First, some of the bosonic fields which are scalar fields in the untwisted
theory become 1-forms in the twisted model. Therefore their kinetic term is not suppressed
as ε → 0 and may still correspond to propagating degrees of freedom in the dimensionally
reduced theory. Second, there are unsuppressed terms in the Lagrangian which describe
φ4 interactions of the bosonic fields. In the limit ε → 0 the equations of motion reduce to

Fww̄ = −i[φw̄, φw], Dwφw̄ = 0, Dw̄φw = 0. (2.8)

This set of equations coincides with the Hitchin’s equations for ‘stable pairs’.8 The moduli
space MH of solutions to Hitchin equations is the target space of supersymmetric 2d
σ-model.

The totally twisted 4d Yang-Mills theory reduces to the twisted version of 2d sigma
model. The twisting current has a bosonic piece and hence some of the bosonic fields
become 1-forms on the world sheet Σ. In 4-dimensional theory this current generates U(1)
global phase rotations of φ and φ̄. In terms of the partially twisted theory the bosonic
contributions to the current is jn = Tr(φ̄w ∂nφw − ∂nφ̄w φw + ...), where n is a worldsheet
index on Σ. Under the dimensional reduction this current becomes

jn =
∫

C

Tr(φ̄w̄(X)∂nφw̄(X)− ∂nφ̄w̄(X)φw(X)) + (fermionic terms), (2.9)

where X(z, z̄) determines the map Σ → MH. The fields φ̄w̄ and φw obey the Hitchin’s
equations and hence are functions on MH . In fact, in the σ-model jn is a Noether current
corresponding to the action of U(1) on MH given by (A,φ) → (A, eiθφ). By the equations
of motion of the σ-model jn is conserved.

** The twist that we use is the partial twisting corresponding to that used in Vafa and
Witten.7



3. N=4 Application

Now we turn to the discussion of aspects of the reduced N = 4 YM in two dimensions.

As we discussed before the two dimensional theory we have obtained is a supersymmetric σ-

model on the Hitchin spaceMH which is a hyperKähler manifold of dimension 6g−6. Since

MH is a smooth hyperKähler manifold the corresponding sigma model is a superconformal

theory, which is in accord with the fact that one expects the four dimensional theory to

be superconformal as well.

Since the coupling constant τ of the 4d YM theory gets identified with the unique

complexified Kähler class for MH , the Montonen-Olive conjecture9 for the 4d N=4 YM,

gets translated to the modularity properties of the topological σ-model with respect to the

Kähler moduli τ . In particular for SU(N), the moduli space for τ should be a fundamental

domain for the subgroup Γ0(N) (with lower off-diagonal entry being 0 mod N) of SL(2,Z)

(note that Σ × C has even quadratic form on H2). The S-duality conjecture in 4d thus

gets translated to a T -duality for this 2d σ-model. However for σ-models we basically

understand how T -duality may arise and thus we may be able to shed some light on the

S-duality in 4d theories. We will show why the Hitchin’s σ-model has T -duality. Before

doing this let us see why this map of S-duality to T -duality is a resonable thing to expect.

In fact this is a natural generalization of the S-duality for the abelian N = 4 theory: If

we consider SU(2) gauge group and choose the internal space C = T 2, with a magnetic flux

turned on, the σ-model becomes trivial (i.e. the Hitchin space is just a point). However

if we don’t turn on the flux, as discussed before we do not get a simple reduction to

a 2d theory as different 4d field configurations lead to different regimes of the reduced

theory which are connected to each other in a complicated way. In one field regime which

corresponds to large expectation values for φ, i.e. the Higgs phase, the theory reduces

to a U(1) gauge theory plus a σ-model on the corresponding Hitchin space which in this

case is just the cotangent of the moduli of flat connection (i.e. the cotangent of the

torus which characterizes the holonomy of the unbroken U(1) along the T 2 modulo the

Weyl action). In other words, as noted in Girardello et al.10, the piece of the partition

function compactified on T 2, which grows like the volume of φ, can be easily extracted

from this complicated effective theory and is manifestly S-dual since for large φ the S-

duality for the non-abelian theory gets mapped to S-duality for the abelian theory. In

this context the field configurations which wrap around the σ-model torus get mapped

to 4d field configurations where there is a magnetic flux for this unbroken U(1) and the



momentum modes are the dual configurations which are identified with the electrical flux

of the unbroken U(1). Thus the S-duality of the abelian theory gets mapped to T -duality*.

Note, however, that it would be incorrect to ignore the other field configurations which

make contributions to the path-integral which do not grow like the volume of φ. In fact it

is relatively easy to see that ignoring those would lead to a Witten index for the σ-model

which does not agree with that for the 4d theory (which for SU(2) is 1 for the σ-model

and 10 for the 4d theory7). Thus to make a really non-abelian test of S-duality we turn

to the case where genus of C is greater than 1 and with ‘t Hooft magnetic flux turned on.

There is a description of MH which is most suitable for us8: For any gauge group

G, MH is a fiber space over the complex space Cd where d = dimG(h − 1), whose fiber

is a complex torus with complex dimension d. The complex structure of the torus varies

holomorphically as we move in Cd, but the Kähler structure of the torus is fixed and can

be identified with the Kähler structure of MH . As we move the base point we reach points

where the fiber is a singular torus but the total space is still smooth. The situation is a

generalization of the cosmic string solution constructed in Greene et al.12, where the base

was C1 and the fiber a complex one dimensional torus. The basic strategy there was to use

adiabatic approximation, by viewing the complex moduli as massless fields in C1 and to

construct a hyperKähler metric by adiabatically varying the complex structure but with

a fixed Kähler structure of the torus. Since the Kähler moduli is fixed for each fiber, this

means that the modular properties of the Kähler moduli we will obtain, as long as we

can trust the adiabatic approximation, will still be the same as that for each fiber (as the

massless fields corresponding to varying it are turned off). The adiabatic approximation

breaks down in the regions where the fiber becomes singular–however as was the case in12

and as is the case for Hitchin space the total space is still a smooth hyperKähler space

and we thus obtain an exact (4, 4) superconformal theory. Even though we may not have

trusted adiabatic approximation for obtaining exact solutions, we do trust it as far as

symmetries are concerned. Thus the Kähler moduli τ which can be identified with that of

a non-singular fiber still enjoys the same modular properties as that of each fiber. Thus

to find the modular properties of the Kähler parameter τ for MH we have to study the

modular properties of the Kähler modulus of the fiber torus.

Let us briefly explain why MH has this toroidal fiber structure. For simplicity let

us concentrate on G = SU(2). Let bww = detφw = − 1
2Trφ2

w. Then by Hitchin equations

* The fact that in this context the S-duality is equivalent to the T -duality of toroidal
compactification of the reduced theory has been independently noted in a recent paper.11



(2.8), ∂bww = 0 whose solution can be identified with C3h−3, i.e. the complex 3h − 3

dimensional space. Generically a point of C3h−3 will correspond to a bww with isolated

zeroes. Let us concentrate on such a solution. Away from the zeroes of bww, φw determines

a U(1) subspace of SU(2), by the condition that Λ = φw/
√

bww = ±1–more precisely we

obtain a line bundle on the double cover Ĉ of C, which has genus 4h − 3, branched

over the zeroes of bww. Away from the branch points the gauge field restricted to this

U(1) part is flat as follows from the fact that TrF (Λ ± 1) = 0 because TrF = 0 and

TrFφw = Tr[φw, φw]φw = 0. This line bundle will have delta function singularities at the

branch points that can be gotten rid of by tensoring with a fixed line bundle with opposite

singularity. The possible solutions to the Hitchin equation will thus give rise to flat bundles

on Ĉ which are parametrized by the Jacobian of Ĉ, which can be viewed as the allowed

holonomies of the U(1) gauge group through the cycles of Ĉ. However the allowed fluxes

are parametrized by the Prym subspace of the Jacobian, which is the 3h− 3 dimensional

complex torus which is odd under the Z2 involution. This is because the involution on

Ĉ exchanges the line bundle with its dual. We have thus given the description of MH

as a toroidal fiber space over C3h−3. The generalization to SU(N) is straightforward,

with the base space being replaced by the space of allowed holomorphic differentials Trφj
w,

where j = 2, ..., N , and by the fiber being the Prym variety of an N -fold cover of C 13.

Note that the S-duality getting mapped to T -duality of this fiber torus is a very natural

generalization of what appears in the abelian case discussed above. Moreover it suggests an

approach to showing S-duality for the non-abelian four dimensional theory by slicing the

4d path-integral in such a way that it becomes equivalent to a family of abelian S-dualities

glued together in a nice way.

To get the precise form of the duality we thus have to study the moduli space of a

complex d dimensional torus. The moduli space of a 2d real dimensional torus is known14

to be
SO(2d, 2d)

SO(2d)× SO(2d)× SO(2d, 2d;Z)

If we fix an integral Kähler form k ∈ H2(T 2d;Z) on the torus and ask about the moduli

of complex structures on the torus with that fixed Kähler class the answer is described as

follows15 : Let xi, yi, i = 1, ..., d denote the coordinates of torus with periodicity 1 in each

direction which are chosen so that the Kähler form can be written as

k =
d∑

i=1

nidxi ∧ dyi (3.1)



where ni are positive integers. Let D denote the d × d diagonal matrix D = (n1, ..., nd).

Let zi be the complex coordinates of the torus. Then we can choose them so that

dzi = nidxi +
∑

j

Ωijdyj (3.2)

where Ω is a complex, symmetric d × d matrix with a positive definite imaginary part

(all follow from the fact that k defined above be a positive (1, 1) form) . We have k =

dzi( 1
−2iImΩ )ij̄dzj̄ . We are interested in how the moduli space of complex structure and the

particular complexified Kähler structure (rescaling the fixed Kähler class by t plus turning

on an anti-symmetric b field in the direction of the fixed Kähler form) imbed in the Narain

moduli space. There is an action of symplectic group SpJ(2d) preserving the symplectic

form

J =
(

0 D
−D 0

)
on the moduli of complex structure, and the full moduli space of complex structures is given

by the quotient SpJ(2d)/U(d)× SpJ(2d;Z), where U(d) rotates the zi among themselves.

Note that SpJ(2d) is equivalent (and conjugate) to the canonical group as far as they are

defined over the reals, but the group SpJ(2d;Z) very much depends on J (for example it

would have been trivial if ni were generic real numbers).

We will now show that the relevant moduli space for our problem is split to the complex

and Kähler directions, where we just described the complex part. Since the Narain moduli

space is described as a group quotient, it suffices to show that the generators of the complex

deformations and the particular Kähler deformation commute. Let us first work over the

real numbers, in which case we can rescale coordinates so that D is replaced by the identity

matrix and J has the canonical form. It is not difficult to see that the generators of the

deformations are then given by

Complex : (σx ⊗ S; 1⊗A)/1⊗A

Kahler : (t = σx ⊗ 1; b = iσy ⊗ J ; σz ⊗ J)/σz ⊗ J

where S and A denote symmetric and anti-symmetric generators of Sp(2d), and the Pauli

matrices act on the (L,R) decomposition of the Narain momenta. Note that the generators

of Kähler deformations commute with those of complex deformations and form the Sp(2)

(or SL(2)) group. In fact this is the maximal subgroups of SO(2d, 2d) which commutes

with Sp(2d) ⊂ SO(2d, 2d). In order to find how the modular group acts on the Sp(2),



given its imbedding in the Narain moduli, all we have to do is to find integral points of the

group generated by σx ⊗ 1, iσy ⊗ J, σz ⊗ J ; We also have to recall that we have rescaled

coordinates so that J is in the canonical form. If we undo this rescaling and we decompose

J = ⊕Ji where Ji corresponds to i-th direction corresponding to ni, we can view our Sp(2)

as sitting diagonally in ⊗Spi(2) where the common moduli τ is identified as niτi in each

subfactor. With no loss of generality let us assume ni’s have no common divisor (otherwise

rescale the Kähler form so this is true). Let n denote the least common multiple of ni.

Then it is clear that the common intersection of all the SLi(2, Z) is generated by T and

STnS where S : τ → −1/τ and T : τ → τ + 1. This generates the group Γ0(n). We thus

have the moduli space
Sp(2d)

U(d)× SpJ(2d,Z)
× Sp(2)

U(1)× Γ0(n)

Thus the Kähler moduli of the Hitchin space has Γ0(n) as a modular group. For SU(N),

all the ni are either N or 1, corresponding to whether they are related to combinations of

cycles of Ĉ which are projected to trivial or non-trivial cycles of C. So in this case n = N

and we recover the prediction of the S-duality that τ should belong to the fundamental

domain of Γ0(N). In fact there is more information in the modular transformation. In

particular prediction of S-duality for τ → −1/τ is in accord with the relation between the

Hitchin spaces for SU(N) vs. SU(N)/ZN .

4. Acknowledgements

I am grateful to T. Pantev for very patient discussions on aspects of Hitchin spaces

and to E. Frenkel and E. Witten for discussions on 4d topological theories. This paper is

based on the joint work in collaborarion with A. Johansen, V. Sadov and C. Vafa.16

5. References

1. H. Verlinde and E. Verlinde, “QCD at high energies and two-dimensional field theory”,

Preprint PUPT-1319, hep-th/9302104.

2. A. Johansen, “Infinite conformal algebras in supersymmetric theories on four mani-

folds”, Preprint NBI-HE-94-34.

3. J. Harvey and A. Strominger, Comm. Math. Phys. 151 (1993) 221.



4. S. Dostoglou, D. Salomon, “Instanton homology and symplectic fixed points”, preprint

1992.

5. E. Witten, Comm. Math.Phys. 117, (1988) 353.

6 E .Witten, in Essays on Mirror Manifolds, ed. by S. T. Yau, International Press,

1992.

7. C. Vafa and E. Witten, Nucl. Phys. B431 (1994) 3.

8. N. J. Hitchin, Proc. Lond. Math. Soc. 55 (1987) 59.

9. C. Montonen and D. Olive, Phys. Lett. B72 (1977) 117.

10. L. Girardello, A. Giveon, M. Porrati, A. Zaffaroni, Phys. Lett. 334B (1994) 331.

11. J. Harvey, G. Moore and A. Strominger, “Reducing S-Duality to T -Duality”, Preprint

hep-th/9501022.

12. B. R. Greene, A. Shapere, C. Vafa and S.-T. Yau, Nucl. Phys. B337 (1990) 1.

13. R. Donagi, “Spectral covers”, Preprint 1994; N. J. Hitchin, Duke Math. J. 54 (1987)

91-114.

14. K. S. Narain, Phys. Lett. B169 (1986) 41.

15. P. Griffiths and J. Harris Principles of Algebraic Geometry (New York, Wiley, 1978).

16. M. Bershadky, A. Johansen, V. Sadov and C. Vafa, “Topological Reduction of 4D

SYM to 2D σ–Models”, Preprint HUTP-95/A004.


