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ABSTRACT

Superconformal sigma models with Calabi–Yau target spaces described as com-
plete intersection subvarieties in toric varieties can be obtained as the low-energy
limit of certain abelian gauge theories in two dimensions. We formulate mirror
symmetry for this class of Calabi–Yau spaces as a duality in the abelian gauge
theory, giving the explicit mapping relating the two Lagrangians. The duality
relates inequivalent theories which lead to isomorphic theories in the low-energy
limit. This formulation suggests that mirror symmetry could be derived using
abelian duality. The application of duality in this context is complicated by the
presence of nontrivial dynamics and the absence of a global symmetry. We pro-
pose a way to overcome these obstacles, leading to a more symmetric Lagrangian.
The argument, however, fails to produce a derivation of the conjecture.

Introduction

Two dimensional conformal field theories with N=2 supersymmetry have been

extensively studied as candidate vacua for perturbative string theory. A particu-
larly interesting class of these consists of supersymmetric sigma models with Calabi–

Yau target spaces. These models exhibit a remarkable duality—known as mirror

symmetry1,2,3,4—which relates two topologically distinct target spaces leading to iso-
morphic conformal field theories. The duality has the property that classical com-

putations in one model reproduce exact computations—including nonperturbative
corrections—in the other. This property has been used to study both the geome-

try of Calabi–Yau spaces and the properties of the CFT’s they determine, with great
success. However, a deep understanding of why such a duality exists has been lacking.

The initial observations of mirror pairs in a restricted class of Calabi–Yau spaces
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‡Permanent address (from 1 Aug. 1995): Department of Particle Physics, Weizmann Institute of
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have been generalized in a set of elegant conjectures by Batyrev and Borisov5,6,7.
These authors proposed a construction of the mirror partner to a given Calabi–Yau

space in a rather broad class (the class of “complete intersections in toric varieties”),
and offered some evidence that the space constructed was indeed the mirror. At

roughly the same time, Witten8 noted that for precisely this class of Calabi–Yau
spaces, the associated conformal field theory could be obtained as the low-energy

approximation to a supersymmetric abelian gauge theory in two dimensions. The

coincidence of the two classes suggests the existence of a natural interpretation of the
conjectures of Batyrev and Borisov in the context of Witten’s model. In this note we

present this interpretation, quantifying and making precise some earlier remarks by
a number of authors to the effect that mirror symmetry must be a manifestation of

electric-magnetic duality in these models. We also present an attempt to establish
the equivalence of the two dual models by a modified version of abelian duality, and

show how the (present) attempt fails.

1. The Gauged Linear Sigma Model

We begin with a brief review of the gauged linear sigma model (GLSM) construc-

tion of Witten8. The model is formulated in (2,2) superspace, and requires for its
construction the specification of a compact abelian group G, a faithful representation

ρ : G → U(1)n, and a G-invariant polynomial W (x1, . . . , xn), where x1, . . . , xn are
coordinates in a complex vector space C

n on which U(1)n acts diagonally. To con-

struct the gauged linear sigma model, we begin with n chiral superfields Φi (satisfying
D+Φi = D−Φi = 0) interacting via the holomorphic superpotential W (Φ1, . . . , Φn).

The model is invariant under the action of G (via ρ) on ~Φ and we gauge this action,
preserving N=2 supersymmetry, by introducing the g-valued vector multiplet V with

invariant field strength Σ = 1√
2
D+D−V . This last field is twisted chiral, which means

that D+Σ = D−Σ = 0. For each continuous U(1) factor of G we include a Fayet-

Illiopoulos D-term and a θ-angle; these terms are naturally written in terms of the
complex combination τ = ir + 1

2π
θ. The resulting Lagrangian density is thus

L =
∫

d4θ
(
‖eR(V )~Φ‖2 − 1

4e2
‖Σ‖2

)

+
(∫

dθ+dθ−W (Φ1, . . . , Φn) + c.c.
)

(1)

+

(
i√
2

∫
dθ+dθ̄−〈τ, Σ〉 + c.c.

)
,

where R = −i dρ : g → R
n is the derivative of the representation ρ (with a factor of

−i to make it real-valued).
Concretely, the general compact abelian group takes the form G = U(1)n−d × Γ

where Γ is a product of finite cyclic groups. Choosing a basis for the continuous part

2



we have n−d vector multiplets Va; the action on the fields is given by R(Va)Φi =
Qa

i Φi for some integer charges Qa
i . Notice that the discrete group Γ does not appear

explicitly in the Lagrangian, but it does affect the construction of the field theory—the
fields are sections of bundles with structure group G. In the case that Γ is nontrivial,

we recover in this way an orbifold of another theory (cf. Ref. [8]).
We will be interested in families of such models, parameterized by the coefficients

of W and by the instanton factors qa := e2πiτa . (There will be a set of complex

codimension one in the parameter space along which the model is singular; we will
study values of the parameters away from this locus.) A family is thus characterized

by the group G and the collection of monomials appearing in W . In order to specify
these data, it is convenient to introduce a u×n matrix P of rank d with nonnegative

integer entries, and a factorization P = ST of P as a product of integer matrices S
and T , each of rank d. The rows tα of T can then be used to construct a collection

of Laurent monomials xtα :=
∏

xtαi

i , and the group G is defined to be the largest
subgroup of H = U(1)n which leaves the monomials xtα invariant. The monomials

xpr defined by the rows of P are then G-invariant by construction, thanks to the
relation pri =

∑
srαtαi. Since pri ≥ 0 by assumption, we may use these monomials to

specify the family of interaction polynomials

W (x1, . . . , xn) :=
1

2π
√

2

u∑

r=1

crx
pr =

1

2π
√

2

u∑

r=1

cr

n∏

i=1

xpri

i . (2)

Alternatively, if we are given G and a family of polynomials W , it is not difficult to
reconstruct the matrices P , S, and T . (Actually, S and T are only well-defined up to

(S, T ) 7→ (SL, L−1T ), with L an invertible integer matrix.)
If we start with only W , as specified by the rows of the matrix P , then the choice

of a factorization P = ST amounts to a choice of a subgroup G ⊂ U(1)n (which
can be less than maximal) under which W is invariant. On the other hand, if we

start with only G then the choice of factorized matrix P = ST allows us to specify
which of the G-invariant monomials should be included in W . In particular, it is

possible to omit some monomials and in this way to study subsets of the maximal
set of all G-invariant superpotentials. As we shall see, this possibility is useful. (The

assumption made above on the rank of S and T restricts this choice—we must use
“enough” monomials to get the rank to be correct—but the restriction is not essential

and relaxing it would simply require a more cumbersome notation.)
Under these conditions, the possible choices for factorizations (and hence for G)

for a given P are rather limited. In any factorization P = ST , the rows of T will
generate an integral lattice of rank d, and the rows of P will generate a sublattice,

also of rank d. This implies that the quotient

rowlattice(T )/ rowlattice(P )

is a torsion subgroup of Z
n/ rowlattice(P ). There are only finitely many of choices of
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such a torsion subgroup, once P has been fixed.

2. The R-Symmetry

The gauged linear sigma model is not conformally invariant, and will flow to

strong-coupling in the infrared. Generically such a theory would be expected to de-
velop a mass gap, but evidence has been found8,9 that the theory at the IR fixed point

will be nontrivial if we require that the high-energy theory admit a non-anomalous
chiral R-symmetry. We consider a right-moving R-symmetry, acting in such a way

that θ+ has charge 1 and θ− is neutral. Invariance of the kinetic terms requires that
the gauge fields V be neutral, and their field strengths Σ hence have charge 1. Invari-

ance of the superpotential interaction requires that the superpotential have charge 1.
If we let µi denote the R-charge of Φi (which may be a rational number) this tells us

that
n∑

i=1

priµi = 1 for all r .

This chiral symmetry can be anomalous in the presence of the gauge fields. A

quick computation8,10 shows that the anomaly is given by a function on the Lie algebra
proportional to V 7→ trace(R(V )); we require that this vanish identically, i.e., that

the symmetry be nonanomalous. Since the action of the continuous part of G on
the monomial x1 · · ·xn is via exp(trace(R(V ))), this is the same as requiring that

x1 · · ·xn be invariant under the continuous part of G (or in our explicit coordinates
that

∑
i Q

a
i = 0 for all a). This in turn will hold exactly when the vector of exponents

(1, . . . , 1) is a linear combination of the rows of the matrix T , with rational coefficients.
(If we had wanted x1 · · ·xn to be invariant under all of G, we would have insisted upon

integer coefficients.) That is, there is a rational vector ~λ such that ~λTT = (1, . . . , 1).
Since we are assuming that the d× u matrix ST has rank d, it is possible to solve

the equation ST~ν = ~λ for a rational vector ~ν. If we also set ~µ = (µ1, . . . , µn)
T, then

we can write the conditions for an unbroken R-symmetry as the existence of ~µ, ~ν such

that

P~µ = (1, . . . , 1)T (3)

~νTP = (1, . . . , 1) . (4)

Finally, using the R-symmetry and calculating as in Ref. [9], one finds that the
central charge c of the fixed-point CFT is determined by

d − (c/3) = 2
n∑

i=1

µi = 2 ~ν TP~µ = 2
u∑

r=1

νr .
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It may be useful to have some examples.

Example 1.

Consider 1 × 1 matrices (p) = (s)(t) with s and t positive integers. Note that

Eqs. (3) and (4) are trivially satisfied in this case. Since G is the group which leaves
xt invariant, we must have G = Z/(t). The interaction polynomial is W (x) = xp, so

our model is an orbifold of the Landau-Ginsburg version of a minimal model.

Example 2.

Consider a u × 6 matrix P of rank 5 such that p0i = pr0 = 1, (letting the i and

r indices start at 0 for this example) implementing Eqs. (3) and (4) directly. This
leads to a polynomial of the form

W (x0, . . . , x5) = x0 W ′(x1, . . . , x5) =
1

2π
√

2
(c0 x0x1x2x3x4x5 + x0 f(x1, . . . , x5)) ,

where f is a polynomial in 5 variables containing precisely u−1 monomials. The ex-

istence of a kernel for p, an integral generator of which we denote by (−k, ℓ1, . . . , ℓ5)
T,

means that W is invariant under a U(1)-action on (x0, . . . , x5) with weights (−k, ℓ1, . . . , ℓ5)—

this implies that f is quasi-homogeneous of degree k and that k =
∑

ℓi. One possible

factorization P = ST would then be given by taking the rows of T to be a basis for the
U(1)-invariant Laurent monomials, and expressing the monomials appearing in f in

terms of those. By construction, this leads to G = U(1). In general (if f is a generic
quasi-homogeneous polynomial) this is the only possible factorization. For special

subfamilies (determined by a subset of the rows of the maximal P ) the polynomial is
invariant under additional discrete symmetries (the restriction on rank(P ) constrains

the continuous part), and other factorizations are possible, leading to groups G with
a nontrivial discrete part.

As we will see below, the weights we have given specify a weighted projective space
P

(ℓ1,...,ℓ5), and {f=0} ⊂ P
(ℓ1,...,ℓ5) defines a (singular) Calabi–Yau hypersurface in that

space, closely related to the GLSM built from the data P = ST . A particularly
interesting case is when u = 6, and P is 6 × 6. The description of these models in

terms of the matrix P was first given by Candelas, de la Ossa, and Katz11 in the
course of generalizing the Berglund–Hübsch12 construction.

Example 3.

To make the previous example a bit more concrete, consider a Fermat-type poly-
nomial

f(x1, . . . , x5) = xa1

1 + xa2

2 + xa3

3 + xa4

4 + xa5

5
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with ℓj = k/aj and suppose that ℓ5 = 1. Choosing G = U(1) as in example 2
corresponds to the factorization




1 1 1 1 1 1
1 a1 0 0 0 0
1 0 a2 0 0 0
1 0 0 a3 0 0
1 0 0 0 a4 0
1 0 0 0 0 a5




=




1 1 1 1 1
1 a1 0 0 0
1 0 a2 0 0
1 0 0 a3 0
1 0 0 0 a4

1 0 0 0 0







1 0 0 0 0 k
0 1 0 0 0 −ℓ1

0 0 1 0 0 −ℓ2

0 0 0 1 0 −ℓ3

0 0 0 0 1 −ℓ4




.

On the other hand, to maximize the group G we should use the entire row space of

P as the row space of T which leads to the factorization




1 1 1 1 1 1
1 a1 0 0 0 0
1 0 a2 0 0 0
1 0 0 a3 0 0
1 0 0 0 a4 0
1 0 0 0 0 a5




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
k −ℓ1 −ℓ2 −ℓ3 −ℓ4







1 1 1 1 1 1
1 a1 0 0 0 0
1 0 a2 0 0 0
1 0 0 a3 0 0
1 0 0 0 a4 0




.

This corresponds to an orbifold of the previous model; in fact, this is the quotient

found by Greene and Plesser4 to correspond to the mirror manifold. Thus we can
reproduce the construction of Ref. [4] in this context by appropriate choices of fac-

torization.

3. The Low-Energy Limit

As explained in detail in Ref. [8], the low-energy limit of this theory can be

described explicitly and—when the central charge is an integer—often coincides with
a sigma-model on a Calabi–Yau space (for appropriate values of the parameters).

To study the low-energy limit one begins by mapping out the space of classical
vacua of the theory. To this end, we first solve the algebraic equations of motion for

the auxiliary fields Da (in the vector multiplets) and Fi (in the chiral multiplets)

Da = −e2

(
n∑

i=1

Qa
i |φi|2 − ra

)
(5)

Fi = −∂W

∂φi

. (6)

The potential energy for the bosonic zero modes is then

U =
1

2e2

n−d∑

a=1

D2
a +

n∑

i=1

|Fi|2 +
∑

a,b

σ̄aσb

n∑

i=1

Qa
i Q

b
i |φi|2 ,
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where φi, σa are the lowest components of Φi, Σa respectively. The space of classical
vacua is the quotient by G of the set of zeros of U .

Neglecting for a moment the superpotential, the space of solutions (setting σ = 0)
is D−1(0)/G. For values of the instanton factors qa in a suitable range this is a toric

variety of dimension d. In the “geometric” case in which ~µ has N 1’s and n−N 0’s,
this variety can be recognized as the total space of a sum of N line bundles over a

compact toric variety of dimension d −N . The equations Fi = 0 then determine (for

generic values of the parameters cr) a complete intersection subvariety of codimension
N in the base space, homologous to the intersection of the divisors associated to the

N line bundles. The condition in Eq. (4) implies that this subvariety is Calabi–Yau.
The fixed-point CFT is given by the nonlinear sigma model with this target space.

The moduli of this CFT are the marginal operators in Eq. (1). Näıvely, both the qa

and the cr would appear to be marginal couplings. The latter, however, are not all

independent. As is well known, some of them can be absorbed in rescalings of the fields
Φi. The true moduli are thus the qa and the scaling-invariant combinations of the cr.

There will in general be other marginal operators in the model which do not appear
explicitly in the Lagrangian; we restrict our attention to the subspace of those that do.

Of course, the linear (or more accurately, toric) structure with which we have endowed
our moduli space is an artifact of our description. In particular, it is consistent with

the natural complex structure that this moduli space carries intrinsically, but bears
no relation to the Kähler structure determined by the Zamolodchikov metric. In other

words, the qa and cr are not the “special” coordinates on this space.

For example, in example 2 above in which G = U(1), the D-term equation is

−k |x0|2 +
∑

i>0

ℓi|xi|2 − r = 0,

so when r > 0 we cannot have xi = 0 for all i > 0. The space of solutions D−1(0)/G

can be recognized as the total space of the canonical bundle over P
(ℓ1,...,ℓ5). If we

impose the F -term equation as well

5∑

i=0

∣∣∣∣∣
∂W

∂xi

∣∣∣∣∣

2

= |W ′|2 + |x0|2
5∑

i=1

∣∣∣∣∣
∂W ′

∂xi

∣∣∣∣∣

2

= 0,

then for a generic choice of the coefficients of W (away from a codimension-one

subspace we avoid as promised above) the space of solutions is given by x0 = 0 and
W ′(x) = 0, yielding a Calabi–Yau hypersurface in P

(ℓ1,...,ℓ5). Further study shows

that the low-energy excitations are tangent to this, so that the low-energy theory is
a nonlinear sigma model with this Calabi–Yau target space.

4. Mirror Symmetry

We are now in a position to state the mirror symmetry conjectures for this class of
models. Mirror symmetry relates two Calabi–Yau manifolds which lead to isomorphic
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CFT’s when used as target spaces for supersymmetric nonlinear sigma models. The
mirror isomorphism reverses the sign of the right-moving R-symmetry; many of the

fascinating properties of mirror pairs can be traced to this feature. Given a GLSM
family determined by P = ST we will construct the mirror family in the same class

of models. We incorporate the sign change on R by writing the dual model using
twisted chiral matter fields coupled to twisted gauge multiplets (with chiral field

strengths). We will call such a model a twisted gauged linear sigma model. As above,

we characterize the family of models by a factorized matrix of nonnegative integers
P̂ = ŜT̂ . We use this data to construct a twisted superpotential Ŵ and write a

Lagrangian density (compare Eq. (1))

L =
∫

d4θ
(
−‖eR̂(V̂ ) ~̂Φ‖2 +

1

4e2
‖Σ̂‖2

)

+
(∫

dθ+dθ̄−Ŵ (Φ̂) + c.c.
)

(7)

+

(
i√
2

∫
dθ+dθ−〈τ̂ , Σ̂〉 + c.c.

)
,

where Σ̂ = − 1
2
√

2
D̄+D̄−V̂ is the (chiral) field strength.

The mirror conjecture states that if we set

P̂ = PT

Ŝ = TT (8)

T̂ = ST

the two families of CFT’s defined by the infrared limits of the two linear models are

isomorphic. This is essentially just a translation of the conjecture of Batyrev and

Borisov7, versions of which have appeared in Refs. [13,11]. In fact, the statement
given here generalizes the conjecture somewhat since the factorization makes possible

a map between subfamilies.
One can make a more precise statement of the conjecture—specifying explicitly

the map between the two parameter spaces which relates isomorphic low-energy limits

qa =
u∏

r=1

ĉ
Qa

i

i

q̂â =
n∏

i=1

cQ̂â
r

r . (9)

Note that as expected only the true moduli appear on the right-hand side of Eq. (9).

The asymptotic limits of Eq. (9) constitute the monomial-divisor mirror map, first

proposed in Refs. [14,15] (see also Ref. [16]) and extended in Refs. [13,17]. The ability
to write a global version of this map and not just an asymptotic form is related to
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the coordinates we use on the moduli space (for a full discussion of this including a
proof of Eq. (9) for a class of examples see Ref. [10]).

We note that this statement of the conjecture is very reminiscent of recent results
on duality in four-dimensional supersymmetric gauge theories18,19,20. Two distinct

gauge theories with nontrivial dynamics lead to the same low-energy physics; further,
instanton effects in one model are reproduced by classical physics in the other.

In example 3 above, it should be clear that this construction interchanges the two

choices of factorization, leaving the (symmetric) matrix P unchanged. As mentioned
above, this reproduces the orbifold construction of the mirror in Ref. [4], clearly and

explicitly demonstrating how the general construction reduces to this upon restricting
to a subfamily of all possible W—precisely the subfamily invariant under the maximal

discrete group.

5. Abelian Duality

The formulation we have given for the mirror conjecture in the context of the
GLSM immediately suggests a relation to abelian duality. We recall that given a

theory with an abelian continuous global symmetry, one can use duality to obtain

an equivalent theory. The dual model is obtained by gauging the global symmetry,
introducing Lagrange multipliers which constrain the connection to be pure gauge

(ensuring that the theory is actually unchanged). One must then eliminate the orig-
inal degrees of freedom, in the process generating a nontrivial effective action for

the Lagrange multipliers, which become the fundamental degrees of freedom for the
dual model. Classically this is accomplished by gauge-fixing. In a theory with N=2

supersymmetry and chiral charged fields, the Lagrange multipliers mentioned above
will be twisted chiral fields, and will appear in the twisted superpotential as Λ̂Σ.

Thus the dual variables will naturally be twisted chiral21, as expected for the mirror
model. This idea was pursued in Refs. [22,23,24,25], and in special cases leads to an

interpretation of mirror symmetry as abelian duality. In the general case, however,
the approach runs into difficulties. The most obvious one is that a generic Calabi–

Yau manifold M has no isometries, hence the associated two dimensional CFT lacks
suitable global symmetries.

If this approach is to lead to the equivalence of GLSM models which is tanta-

mount to the mirror conjecture, some modification will be required. The two linear
models are not equivalent; the conjecture implies only that they become equivalent

in the extreme low-energy limit. This is consistent with the fact that the model has
nontrivial dynamics. As discussed above this is similar to the recent discoveries in

four-dimensional supersymmetric gauge theories.
In the context of the GLSM, there is a natural symmetry group one would attempt

to use. This is the group H = U(1)n acting by phases on the fields Φi. The difficulty,
of course, is that this symmetry is explicitly broken by the superpotential Eq. (2) to

9



the subgroup G. Since this symmetry is gauged in Eq. (1), the resulting model has
no global symmetries at all (except the R-symmetry which we cannot gauge).a We

can attempt to overcome this obstacle by recasting the symmetry-breaking terms as
anomalies. To implement this idea, introduce a set of twisted chiral fields Ψ̂r into the

model, coupled to twisted gauge multiplets V̂r gauging the group Ĥ = U(1)u which
acts by phases, i.e. consider the additional term in the kinetic energy

L
k̂

=
∫

d4θ
(
−‖~̂ΨeV̂ ‖2 +

1

4e2
‖Σ̂‖2

)
. (10)

We then replace the superpotential Eq. (2) by

Ws =
1

2π
√

2

u∑

r=1

Σ̂r

[
log

(
cr

n∏

i=1

Φpri

i

)
+ 1

]
. (11)

In this form it is clear that H is broken by Ĥ anomalies, as desired. Note that this
interaction does not break the R-symmetry. However, the couplings cr have nonzero

beta functions, which will cause them to grow large, so the Ĥ gauge theory is strongly
coupled at low energies. In this limit, as discussed in Refs. [8,10], this sector of the

model is in a confining phase, in which the lowest component σ̂ of Σ̂ gets a nonzero

expectation value. The charged fields are then all massive, with masses of order
this expectation value, and the light degrees of freedom are in the Σ̂ multiplet. The

effective action for these can be reliably computed at one-loop order. Integrating out
the Ψ̂’s leads to the effective superpotential

Weff =
1

2π
√

2

u∑

r=1

Σ̂r

[
log

(
cr

n∏

i=1

Φpir

i

)
+ 1 − log Σ̂r

]
. (12)

In the effective theory we can treat Σ̂ as a chiral field; since there are no charged

fields we can forget its relation to a gauge symmetry. At low energy, we can eliminate
Σ̂ from Eq. (12) to get Σ̂r = cr

∏n
i=1 Φpir

i . When substituted in Eq. (12), this leads

to Eq. (2) as the effective superpotential for Φ. Thus at low energies this model is
equivalent to the original GLSM, while the symmetry-breaking terms are explicitly

exhibited as anomalies.
We now wish to perform a duality transformation with respect to the anomalous

symmetry. Gauging an anomalous symmetry appears inconsistent, but in perform-
ing a duality transformation an anomalous abelian symmetry can be restored by

assigning transformation properties (under the twisted symmetries) to the Lagrange
multipliers.26 In the case at hand, gauging the global symmetry means that the gauge

group becomes all of H . We should also introduce Lagrange multipliers, transform-
ing under Ĥ, to constrain the field strength to lie in g ⊂ h. Classically, integrating

aThis once led E. Witten to describe the problem of understanding mirror symmetry in this model
as the question “How to perform duality on a non-symmetry?”
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these out will reproduce the original model. This is not true quantum mechanically,
however, as is most easily seen by introducing a small kinetic term for the Lagrange

multipliers, and considering the limit as this term is removed. It then becomes clear
that the contribution of these to the one-loop effective superpotential for Σ̂ is con-

stant in the limit. Introducing these extra fields would thus destroy the one-loop
calculation that led to Eq. (12).

This suggests that we consider a related Lagrangian, in which the twisted chiral

matter is an accurate “reflection” of the chiral matter. This defines a model that is
manifestly mirror-symmetric. Our proposal for this new model contains chiral fields
~Φ and twisted chiral fields ~̂Φ, and (twisted) gauge multiplets gauging the entire group

H (Ĥ). We begin with the Lagrangian density

L =
∫

d4θ

(
∑

i

(
Ji −

1

4e2
|Σi|2

)
−
∑

r

(
Ĵr −

1

4e2
|Σ̂r|2

)
+

1

2π

∑

ri

pri log Ji log Ĵr

)

+

(
i√
2

∫
dθ+dθ−〈Σ̂, τ̂〉 + c.c

)
+

(
i√
2

∫
dθ+dθ̄−〈Σ, τ〉 + c.c

)
, (13)

where Ji = |Φie
Vi |2 and likewise for Ĵr.

This action is manifestly invariant under H × Ĥ . It is classically equivalent to the
action we obtain by integration by parts,

Leq =
∫

d4θ

(
∑

i

(
Ji −

1

4e2
|Σi|2

)
−
∑

r

(
Ĵr −

1

4e2
|Σ̂r|2

)
+

2

π

∑

ri

priViV̂r

)

+
(∫

dθ+dθ−W (Σ̂, Φ) + c.c
)

+
(∫

dθ+dθ̄−W̃ (Σ, Φ̂) + c.c
)

, (14)

where the modified superpotentials are

W (Σ̂, Φ) =
1

2π
√

2

u∑

r=1

Σ̂r

[
log

(
q̂r

n∏

i=1

Φpri

i

)
+ 1

]

W̃ (Σ, Φ̂) =
1

2π
√

2

n∑

i=1

Σi

[
log

(
qi

u∏

r=1

Φ̂−pri

r

)
+ 1

]
, (15)

We see that the conditions for a nonanomalous R-symmetry are precisely Eqs. (3)

and (4). When these hold we expect to find at low energies an N=2 superconformal
field theory where the R-symmetry defined above becomes the chiral U(1) contained

in the superconformal algebra. We will use the second formulation as our definition of
the quantum theory. (In the presence of instantons the integration by parts requires

the consideration of boundary terms, which are nontrivial.)
It is worthwhile noting the way in which Eq. (14) manages to be gauge-invariant

despite the manifestly non-invariant interactions. Under a gauge transformation (in
H×Ĥ) the variation of Eq. (15) is cancelled, up to a total derivative, by the variation

11



of the V V̂ term. Thus the full action is invariant under gauge transformations ap-
proaching the identity at infinity, while transformations with constant parameter are

still anomalous. We note that this cancellation holds precisely when the exponents in
the two superpotentials are related as in Eq. (15). In a derivation of mirror symmetry

along these lines this would be the origin of the first part of Eq. (8).
At this point one still needs to show that the theory defined by Eq. (14) is equiv-

alent to Eq. (1). This can be achieved using the fact that the coefficients qi, q̂r once

more contain redundant deformations which can be undone by field rescalings (in fact
this is precisely the holomorphic extension of the statement above about anomalies).

One can perform a redundant deformation of the model to find a region in parameter
space in which the Σ̂, Φ̂ system is in a confining phase and the one-loop approximation

that led to Eq. (12) is valid. One can also show that in this region the integration
over Φ̂ will lead to constraints on Σ, restricting the gauge group to G. In fact, the

last two equations of Eq. (8) arise naturally in this context as well.
The manifest mirror symmetry would then lead one to expect that Eq. (14) will

also be equivalent to Eq. (7) under the conditions Eqs. (8) and (9). To see this one
performs redundant deformations to a region in parameter space in which the Σ, Φ

system confines and follows a “mirror” version of the argument sketched above. This
naturally incorporates all of the conditions in Eqs. (8) and (9). We hasten to point

out however that Eq. (14) is not in fact mirror symmetric. The reason for this is the
sign in the second of Eq. (15).b Unexpectedly, this sign, which is required for gauge

invariance since it follows by integration by parts from Eq. (13), cannot be removed

(it is related to the relative sign of the kinetic terms for the chiral and twisted chiral
fields). Similar signs appear often in discussions of duality, and are usually harmless.

In the case at hand, however, the sign multiplies a logarithm, and its effect is to lead,
at least superficially, to a twisted superpotential polynomial in Φ̂−1 rather than Φ̂

after performing the “mirror” argument.
This would seem to shatter the hopes for an understanding of mirror symmetry

for these models along the lines presented here. However, the model we present does
seem to incorporate naturally many of the features required for a derivation of the

conjectures in section four. It is possible that some modification of this model will
lead to the desired result. Future study will tell if this is indeed the case.
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ume 218 of Astérisque, pages 9–34, Soc. Math. de France, 1993.
17. S. Katz and D. R. Morrison, The Multinomial-Divisor Mirror Map, In prepa-

ration.

18. N. Seiberg and E. Witten, Electric-Magnetic Duality, Monopole Condensation,
and Confinement in N=2 Supersymmetric Yang–Mills Theory, Nucl. Phys.

B426 (1994) 19–52, Erratum: ibid. B430 (1994), 485–486.
19. N. Seiberg and E. Witten, Monopoles, Duality and Chiral Symmetry Breaking

in N=2 Supersymmetric QCD, Nucl. Phys. B431 (1994) 484–550.
20. N. Seiberg, Electric-Magnetic Duality in Supersymmetric Nonabelian Gauge

Theories, Nucl. Phys. B435 (1995) 129–146.
21. S. J. Gates, Jr., C. M. Hull, and M. Roček, Twisted Multiplets and New Su-
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