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Abstract

We discuss one of the generic spacetime consequences of having (1,0) world-

sheet supersymmetry in tachyon-free string theory, namely the appearance

of a “misaligned supersymmetry” in the corresponding spacetime spectrum.

Misaligned supersymmetry is a universal property of (1,0) string vacua which

describes how the arrangement of bosonic and fermionic states at all string

energy levels conspires to preserve finite string amplitudes, even in the absence

of full spacetime supersymmetry. Misaligned supersymmetry also constrains

the degree to which spacetime supersymmetry can be broken without break-

ing modular invariance, and is responsible for the vanishing of various mass

supertraces evaluated over the infinite string spectrum.
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In string theory, the interplay between worldsheet symmetries and their conse-

quences in spacetime remains largely mysterious. Certain results, however, indicate

strong connections between the two. For example, it is well-known that N = 4 su-

persymmetry on the worldsheet implies N = 2 supersymmetry in spacetime, and

likewise it has been demonstrated that N = 2 supersymmetry on the worldsheet

implies N = 1 supersymmetry in spacetime. In this talk, we shall consider the

more general situation from which these results might follow as special cases. In

particular, we shall discuss some of the spacetime consequences of N = 1 worldsheet

supersymmetry.

There are various reasons why this is an important question. N = 1 worldsheet su-

persymmetry is the defining property of the superstring and heterotic string theories,

and it is in fact this feature which is single-handedly responsible for the introduction

of spacetime fermions into the resulting string spectrum. It is therefore interesting to

determine whether N = 1 worldsheet supersymmetry is also sufficiently powerful to

constrain the distribution of these fermions relative to the bosons. Clearly we do not

expect exact boson/fermion degeneracies, as occur in the more restrictive cases with

spacetime supersymmetry resulting from N = 2 or N = 4 worldsheet supersymmetry,

but we might expect that some more general constraints nevertheless control their

distribution. Another reason for investigating this issue is to uncover some of the

hidden stringy mechanisms whereby super- or heterotic string theories achieve finite-

ness even without spacetime supersymmetry. For example, it is well-known that the

string one-loop vacuum energy (cosmological constant) Λ is a finite quantity in these

theories, even without spacetime supersymmetry ; in an ordinary non-supersymmetric

field theory this quantity would diverge. Clearly, the string theory differs from field

theory in providing infinite towers of massive (Planck-scale) states, and it is well-

understood how, through the requirement of modular invariance, the presence of this

tower succeeds in removing the ultraviolet divergences. What is perhaps less clear,

by contrast, is how the bosonic and fermionic states ultimately conspire to arrange

themselves level-by-level throughout this tower in order to achieve this remarkable

result.

Recently it has been shown [1] that the answers to these questions involve a

hidden so-called “misaligned supersymmetry” which persists in the string spectrum,
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even without full spacetime supersymmetry. Indeed, this “misaligned supersymme-

try” is a generic property of modular-invariant tachyon-free (1, 0) string vacua, and

appears for any spacetime dimension D > 2 and for any compactification mecha-

nism. Furthermore, it has been shown that this misaligned supersymmetry is the

underlying symmetry responsible for the finiteness of the cosmological constant in

the absence full spacetime supersymmetry, and in fact explains how string finiteness

is ultimately reconciled with the presence of exponentially growing numbers of string

states throughout the infinite towers in the string spectrum. Moreover, misaligned

supersymmetry in principle also constrains the degree to which spacetime supersym-

metry may be broken in string theory without destroying modular invariance and

the resulting finiteness of string amplitudes. Indeed, misaligned supersymmetry is

sufficiently powerful to guarantee the vanishing of various mass supertraces Str Mn

in string theory, even without spacetime supersymmetry [2]. Thus, in some sense,

misaligned supersymmetry lies at the root of many of the remarkable properties that

string theory exhibits.

In the remainder of this talk, we shall outline some spacetime consequences of

misaligned supersymmetry. Further discussion and details can be found in Ref. [1].

We begin by considering how states are typically arranged in string theory. In

general, the string spectrum consists of a collection of infinite towers of states: each

tower corresponds to a different sector of the underlying string worldsheet theory,

and consists of a ground state with a certain vacuum energy Hi and infinitely many

higher excited states with worldsheet energies n = Hi + ℓ where ℓ ∈ ZZ. The crucial

observation, however, is that the different sectors in the theory will in general be

misaligned relative to each other, and start out with different vacuum energies Hi

(modulo 1). For example, while one sector may contain states with integer energies

n, another sector may contain states with n ∈ ZZ + 1/2, and another contain states

with n ∈ ZZ + 1/4. Thus each sector essentially contributes a separate set of states

to the total string spectrum, and we can denote the net degeneracies of these states

from the ith individual sector as {a(i)
nn
}, where n ∈ ZZ + Hi. Thus, a(i)

nn
represents the

number of spacetime bosons minus fermions in the ith sector of the theory having

spacetime (mass)2 = n ∈ ZZ + Hi.

For each sector i, let us now take the next step and imagine analytically continuing
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the set of numbers {a(i)
nn
} to form a smooth function Φ(i)(n) which not only reproduces

{a(i)
nn
} for the appropriate values n ∈ ZZ + Hi, but which is continuous as a function

of n. These functions Φ(i)(n) clearly must not only exhibit the leading Hagedorn

exponential dependence eC
√

n, but must also contain all of the subleading behavior

as well so that exact results can be obtained for the relevant values of n. Such

continuations are unique and well-defined, and may be easily generated [3].

Given that such functions Φ(i)(n) exist, misaligned supersymmetry is then char-

acterized by the cancellation of the sum of these functional forms over all sectors in

the theory:
∑

i

Φ(i)(n) = 0 . (1)

Note that this is a cancellation in the functional forms Φ(i)(n), and not a cancellation

in the actual numbers of states {a(i)
nn
}.

In order to see the effect of this cancellation on the actual numbers of states {a(i)
nn},

let us examine a simple hypothetical example, a toy string model containing only two

sectors A and B. For the sake of concreteness, let us assume that these two sectors

have different vacuum energies, with HA = 0 (modulo 1) and HB = 1/2 (modulo 1).

We thus have two separate towers of states in this theory, with degeneracies {a(A)
nn }

situated at energy levels n ∈ ZZ, and degeneracies {a(B)
nn

} situated at energy levels

n ∈ ZZ + 1/2 (in units of the Planck mass M0). Then if the corresponding functional

forms that describe these degeneracies are Φ(A)(n) and Φ(B)(n) respectively, then

misaligned supersymmetry implies that Φ(B)(n) = −Φ(A)(n). However, due to the

misalignment between the two sectors in this hypothetical example, the actual value

of each individual ann will be Φ(A)(n) if n ∈ ZZ, or Φ(B)(n) if n ∈ ZZ + 1/2. This

behavior is sketched in Fig. 1. Thus, we see that misaligned supersymmetry leads

to an oscillation in which any given boson surplus at a certain energy level implies

a larger fermion surplus at a higher energy level, followed by an even larger boson

surplus at an even higher level, and so forth throughout the string spectrum.

Such oscillatory behavior appears in any modular-invariant tachyon-free theory

regardless of the number of sectors present, with the simple sketch in Fig. 1 becom-

ing more complicated for more complex string models. In any case, however, the

cancellation in Eq. (1) is always preserved, with delicately balanced boson/fermion

oscillations persisting throughout the infinite string spectrum.

4



3 41 20

g
M

=

Φ(Μ)

(#B− #F)
M

− Φ(Μ)

Μ 2

Μ 0
/ 2

Figure 1: The net number of physical states ann for the two-sector model discussed

in the text, plotted versus energy n [equivalently the spacetime (mass)2].

It is clear that spacetime supersymmetry is a special case of this generic behavior,

for in this case we have ann = 0 level-by-level, and the “amplitude” of this oscillation is

zero. Thus, if spacetime supersymmetry is to be broken in such a way that no physical

tachyons are introduced and modular invariance is be maintained (as required for

a self-consistent string theory), then we can at most “misalign” this bosonic and

fermionic cancellation, introducing a mismatch between the bosonic and fermionic

state degeneracies at each level in such a way that a carefully balanced “misaligned

supersymmetry” survives. It is interesting to see which classes of physical supersym-

metry-breaking scenarios do not lead to such behavior, and are thereby precluded.

For example, we can already rule out any scenario in which the energies of bosonic

and fermionic states are merely shifted relative to each other by some amount ∆n.

Instead, we would need to simultaneously create a certain number Φ(n+∆n)−Φ(n) of

additional states (presumably winding-mode states coming down from higher mass

levels) so that the cancellation of the functional forms Φ is still preserved. Such
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supersymmetry-breaking scenarios are currently being investigated.

There are also a number of other potential applications and extensions to mis-

aligned supersymmetry. For example, misaligned supersymmetry should be particu-

larly relevant to any system in which the asymptotic numbers of high-energy states

plays a crucial role, such as in string thermodynamics and the possible string phase

transition. In addition, we would also like to understand the role that misaligned

supersymmetry plays in ensuring finiteness to all orders (not just one-loop), and also

for all n-point functions. Clearly, this requires extending our results to include the

unphysical string states, as well as string interactions. Such work is in progress.
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