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ABSTRACT

This is a short review on strings in curved spacetimes. We start by recall-
ing the classical and quantum string behaviour in singular plane waves back-
grounds. We then report on the string behaviour in cosmological spacetimes
(FRW, de Sitter, power inflation) which is by now largerly understood. Recent
progress on self-consistent solutions to the Einstein equations for string domi-
nated universes is reviewed. The energy-momentum tensor for a gas of strings is
considered as source of the spacetime geometry. The string equation of state is
determined from the behaviour of the explicit string solutions. This yields a self-
consistent cosmological solution exhibiting realistic matter dominated behaviour
R ∼ (T )2/3 for large times and radiation dominated behaviour R ∼ (T )1/2 for
early times. Inflation in the string theory context is discussed.

1. Strings and Quantum Gravity

The construction of a sensible quantum theory of gravitation is probably the

greatest challenge in today’s theoretical physics. Deep conceptual problems (as the
lost of quantum coherence) arise when one tries to combine (second) quantization

concepts with General Relativity. That is, it may be very well that a quantum theory
of gravitation needs new concepts and ideas. Of course, this future theory must have

the today’s General Relativity and Quantum Mechanics (and QFT) as limiting cases.
In some sense, what everybody is doing in this domain (including string theories

approach) may be to the real theory what the old quantum theory in the 10’s was
compared with quantum mechanics 1.

The main drawback to develop a quantum theory of gravitation is clearly the
total lack of experimental guides for the theoretical development. The physical effects

combining gravitation and quantum mechanics are relevant only at energies of the
order of MP lanck = h̄c/G = 1.22 1016Tev. Such energies were available in the Universe

at times t < tP lanck = 5.4 10−44sec. Anyway, as a question of principle, to construct a

quantum theory of gravitation is a problem of fundamental relevance for theoretical
physics . In addition, one cannot rule out completely the possibility of some “low

energy” (E ≪ MP lanck) physical effect that could be experimentally tested.
Since MP lanck is the heaviest possible particle scale, a theory valid there (necessar-

ily involving quantum gravitation) will also be valid at any lower energy scale. One
may ignore higher energy phenomena in a low energy theory, but not the opposite. In



other words, it will be a ‘theory of everything’. We think that this is the key point

on the quantization of gravity. A theory that holds till the Planck scale must de-

scribe all what happens at lower energies including all known particle physics as well
as what we do not know yet (that is, beyond the standard model). Notice that this

conclusion is totally independent of the use of string models. A direct important con-
sequence of this conclusion, is that it does not make physical sense to quantize pure

gravity. A physically sensible quantum theory cannot contain only gravitons. To

give an example, a theoretical prediction for graviton-graviton scattering at energies
of the order of MP lanck must include all particles produced in a real experiment. That

is, in practice, all existing particles in nature, since gravity couples to all matter1.
String theory is a serious candidate for a quantum description of gravity since it

provides a unified model of all interactions overcoming at the same time the non-
renormalizable character of quantum fields theories of gravity.

As a first step on the understanding of quantum gravitational phenomena in a
string framework, we started in 1987 a programme of string quantization on curved

spacetimes 3,4.
The investigation of strings in curved spacetimes is currently the best framework

to study the physics of gravitation in the context of string theory since it provides
essential clues about the physics in this context but is clearly not the end of the

story. The next step beyond the investigation of test strings, consist in finding self-

consistently the geometry from the strings as matter sources for the Einstein equa-

tions or better the string effective equations (beta functions). This goal is achieved

in 5 for cosmological spacetimes at the classical level. Namely, we used the energy-
momentum tensor for a gas of strings as source for the Einstein equations and we

solved them self-consistently. [For more detailed reviews see 1,2].

Let us consider bosonic strings (open or closed) propagating in a curved D-
dimensional spacetime defined by a metric GAB(X), 0 ≤ A, B ≤ D − 1. The action

can be written as

S =
1

2πα′

∫

dσdτ
√

g gαβ(σ, τ) GAB(X) ∂αXA(σ, τ) ∂βXB(σ, τ) (1)

Here gαβ(σ, τ) ( 0 ≤ α, β ≤ 1 ) is the metric in the worldsheet, α′ stands for the

string tension. As in flat spacetime, α′ ∼ (MP lanck)
−2 ∼ (lP lanck)

2 fixes the scale in
the theory.

We will start considering given gravitational backgrounds GAB(X). That is, we
start to investigate test strings propagating on a given spacetime. In section 3, the

back reaction problem will be studied. That is, how the strings may act as source of

the geometry.
String propagation in massless backgrounds other than gravitational (dilaton, an-

tisymmetric tensor) can be investigated analogously.



The string equations of motion and constraints follow by extremizing eq.(1) with
respect to XA(σ, τ) and gαβ(σ, τ), respectively. In the conformal gauge, they take the

form:

∂−+XA(σ, τ) + ΓA
BC(X) ∂+XB(σ, τ) ∂−XC(σ, τ) = 0 , 0 ≤ A ≤ D − 1, (2)

T±± ≡ GAB(X) ∂±XA(σ, τ) ∂±XB(σ, τ) = 0 , T+− ≡ T−+ ≡ 0 (3)

where we introduce light-cone variables x± ≡ σ ± τ on the world-sheet and where
ΓA

BC(X) stand for the connections (Christoffel symbols) associated to the metric

GAB(X).
Notice that these equations in the conformal gauge are still invariant under the

conformal reparametrizations:

σ + τ → σ′ + τ ′ = f(σ + τ) , σ − τ → σ′ − τ ′ = g(σ − τ) (4)

Here f(x) and g(x) are arbitrary functions.

The string boundary conditions in curved spacetimes are identical to those in

Minkowski spacetime. That is,

XA(σ + 2π, τ) = XA(σ, τ) closed strings

∂σXA(0, τ) = ∂σXA(π, τ) = 0 open strings. (5)

We shall consider, as usual, that only four space-time dimensions are uncompact-

ified. That is, we shall consider the strings as living on the tensor product of a curved
four dimensional space-time with lorentzian signature and a compact space which is

there to cancel the anomalies. Therefore, from now on strings will propagate in the
curved (physical) four dimensional space-time. However, we will find instructive to

study the case where this curved space-time has dimensionality D, where D may be
2, 3 or arbitrary.

2. Strings Falling into Spacetime Singularities: nonlinear plane waves.

Let us first consider strings propagating in gravitational plane-wave space-times
6,7. In this geometry the full non-linear string equations (2) and constraints (3) can

be exactly solved in closed form. The plane-wave space-times are described by the
metric

(ds)2 = −dUdV +
D−2
∑

i=1

(dX i)2 −
[

W1(U) (X2 − Y 2) + 2 W2(U) XY
]

(dU)2 (6)

where X ≡ X1 , Y ≡ X2 . These space-times are exact solutions of the vacuum
Einstein equations for any choice of the profile functions W1(U) and W2(U). In



addition they are exact string vacua 10. The case when W2(U) = 0 describes waves
of constant polarization. When both W1(U) 6= 0 and W2(U) 6= 0 , eq.(6) describes

waves with arbitrary polarization. If W1(U) and/or W2(U) are singular functions,
space-time singularities will be present. The singularities will be located on the null

plane U = constant. We consider profiles which are nonzero only on a finite interval
−T < U < T , and which have power-type singularities 6,7,

W1(U)
U→0
=

α1

|U |β1
, W2(U)

U→0
=

α2

|U |β2
(7)

The spacetimes (6) share many properties with the shockwaves 8,9. In particular,
U(σ, τ) obeys the d’Alembert equation and we can choose the light-cone gauge

U = 2 α′pUτ . (8)

The string equations of motion (2) become then in the metric (6) :

V ′′ − V̈ + (2α′pU)2
[

∂UW1 (X2 − Y 2) + 2 ∂UW2 XY
]

+ 8α′pU
[

W1(XẊ − Y Ẏ ) + W2(XẎ + Ẏ X)
]

= 0

X ′′ − Ẍ + (2α′pU)2 [W1X − W2Y ] = 0

Y ′′ − Ÿ + (2α′pU)2 [W2X − W1Y ] = 0 (9)

and the constraints (3) take the form:

±∂±V< =
1

α′pU

[

(∂±X)2 + (∂±Y )2 +
D−2
∑

i=3

(∂±X i)2

]

+α′pU
[

W1 (X2 − Y 2) + 2 W2 XY
]

(10)
Let us analyze now the solutions of the string equations (9) and (10) for a closed

string. The transverse coordinates obey the d’Alembert equation, with the solution

X i(σ, τ) = qi + 2piα′τ + i
√

α′
∑

n 6=0

{αi
n exp[in(σ − τ)] + α̃i

n exp[−in(σ + τ)]}/n,

3 ≤ i ≤ D − 2. (11)

For the X and Y components it is convenient to Fourier expand as

X(σ, τ) =
+∞
∑

n=−∞
exp(inσ) Xn(τ) , Y (σ, τ) =

+∞
∑

n=−∞
exp(inσ) Yn(τ)

Then, eqs.(9) for X and Y yield

Ẍn + n2Xn − (2α′pU)2 [W1Xn − W2Yn] = 0
Ÿn + n2Yn − (2α′pU)2 [W2Xn − W1Yn] = 0 (12)

where we consistently set U = 2α′pUτ . Formally, these are two coupled one dimen-
sional Schrödinger-like equations with τ playing the rôle of a spatial coordinate.



We study now the interaction of the string with the gravitational wave. For
2α′pUτ < −T , W1,2(τ) = 0 and therefore X, Y are given by the usual flat-space

expansions

X(σ, τ) = qX
< + 2pX

<α′τ + i
√

α′
∑

n 6=0

{αX
n< exp[−inτ)] − α̃X

−n< exp[inτ)]} exp[inσ]/n

Y (σ, τ) = qY
< + 2pY

<α′τ + i
√

α′
∑

n 6=0

{αY
n< exp[−inτ)] − α̃Y

−n< exp[inτ)]} exp[inσ]/n

These solutions define the initial conditions for the string propagation in τ ≥ −τ0 ≡
− T

2α′pU . In the language of the Schrödinger-like equations we have a two channel
potential in the interval −τ0 < τ < +τ0. We consider the propagation of the string

when it approaches the singularity at U = 0 = τ from τ < 0.
The general case when W1 6= 0 6= W2 is solved in 7. Let us concentrate here on

the case W2 ≡ 0, W1(U) = α
[

|U |−β − |T |−β
]

for |U | < T .

Eq.(12) can be approximated near τ = 0− as

Ẍn − (2α′pU)2−β

|τ |β α Xn = 0

Ÿn +
(2α′pU)2−β

|τ |β α Yn = 0

The behaviour of the solutions Xn(τ) and Yn(τ) for τ → 0 depends crucially on the

value range of β. Namely, i) β > 2, ii) β = 2, iii) β < 2.
When β < 2 the solution for τ → 0− behaves as

X(σ, τ)
τ→0−
= BX(σ) + AX(σ) τ + O(|τ |2−β) ,

Y (σ, τ)
τ→0−
= BY (σ) + AY (σ) τ + O(|τ |2−β) , β 6= 1

[In the special case β = 1 one should add a term 0(τ ln |τ |)]. Here and in what
follows, BX(σ), AX(σ), BY (σ) and AY (σ) are arbitrary functions depending on the

initial data.
For β < 2, the string coordinates X, Y are always regular indicating that the string

propagates smoothly through the gravitational-wave singularity U = 0. (Nevertheless,

the velocities Ẋ and Ẏ diverge at τ = 0 when 1 ≤ β < 2).
For the case β = 2 the solution is 6:

X(σ, τ)
τ→0−
= BX(σ)|τ |(1−

√
1+4α)/2 + AX(σ)|τ |(1+

√
1+4α)/2

Y (σ, τ)
τ→0−
= BY (σ)|τ |(1−

√
1−4α)/2 + AY (σ)|τ |(1+

√
1−4α)/2 (13)

Let us now consider the case β > 2. We have 6

X(σ, τ)
τ→0−
= BX(σ)|τ |β

4 exp[K|τ |1−β/2] + AX(σ)|τ |β

4 exp[−K|τ |1−β/2] ,



Y (σ, τ)
τ→0−
= AY (σ)|τ |β

4 cos
[

K|τ |1−β/2 + CY (σ)
]

. (14)

where

K =
(2α′pU)1−β/2

β/2 − 1

√
α > 0 ,

Let us now analyze the string behaviour near the singularity τ → 0− for β ≥ 2.
We see that for strong enough singularities (β ≤ 2) the transverse coordinate X tends

to infinity when the string approaches the singularity τ → 0, U → 0. This means that
the string does not cross the gravitational wave, since it does not reach the U > 0

region. The Y coordinate tends to zero oscillating, when τ → 0.
The string goes off to X = ∞, grazing the singularity plane U = 0 (therefore

never crossing it). At the same time, the string oscillates in the Y direction, with an

amplitude vanishing for τ → 0−.
The spatial string coordinates X i(σ, τ) [3 ≤ i ≤ D−2] behave freely [eq.(11)]. The

longitudinal coordinate V (σ, τ) follows from the constraint eqs.(10) and the solutions
(13,14) for X(σ, τ), Y (σ, τ) and Xj(σ, τ) [3 ≤ j ≤ D − 2]. We see that for τ → 0− ,

V (σ, τ) diverges as the square of the singular solutions (13,14).
Let us consider the spatial length element of the string, i.e. the length at fixed

U = 2α′pUτ , between two points (σ, τ) and (σ + dσ, τ),

ds2 = dX2 + dY 2 +
D−2
∑

j=3

(dXj)2

For τ → 0− eqs.(13,14) yield

ds2 τ→0−
=

[

BX(σ)′
]2

dσ2 |τ |1−
√

1+4α for β = 2 ,

ds2 τ→0−
=

[

BX(σ)′
]2

dσ2 |τ |β/2 exp
[

K|τ |1−β/2
]

for β ≥ 2. (15)

That is, the proper length between (σ0, τ) and (σ1, τ) is given by

∆s
τ→0−
= [BX(σ1) − BX(σ2)]

√

|τ |
1−

√
1+4α̃

→ ∞ for β = 2 ,

∆s
τ→0−
= [BX(σ1) − BX(σ2)] |τ |β/4 exp

[

K|τ |1−β/2
]

→ ∞ for β ≥ 2. (16)

We see that ∆s → ∞ for τ → 0− . That is, the string stretches infinitely when it
approaches the singularity plane. This stretching of the string proper size also occurs

for τ → 0 in the inflationary cosmological backgrounds as we shall see below.

Another consequence of eqs. (13,14) is that the string reaches infinity in a finite
time τ . In particular, for σ-independent coefficients, eqs. (13,14) describe geodesic

trajectories. The fact that for β ≥ 2, a point particle (as well as a string) goes off to
infinity in a finite τ indicates that the space-time is singular.

Finally, we would like to remark that the string evolution near the space-time sin-
gularity is a collective motion governed by the nature of the gravitational field. The



(initial) state of the string fixes the overall σ-dependent coefficients AX(σ), BX(σ),
AY (σ), BY (σ) [see eqs. (13,14)], whereas the τ -dependence is fully determined by the

space-time geometry. In other words, the τ -dependence is the same for all modes
n. In some directions, the string collective propagation turns to be an infinite mo-

tion (the escape direction X), whereas in the orthogonal direction (Y ), the motion
is oscillatory, but with a fixed (n-independent) frequency. In fact, these features are

not restricted to singular gravitational waves, but are generic to strings in strong

gravitational fields [see sec.(6) and refs.(8,1)].
For sufficiently weak spacetime singularities (β1 < 2 and β2 < 2), the string crosses

the singularity and reaches the region U > 0. Therefore, outgoing scattering states
and outgoing operators can be defined in the region U > 0. We explicitly found

in 6,7 the transformation relating the ingoing and outgoing string mode operators.
For the particles described by the quantum string states, this relation implies two

types of effects as described in 11,1 for generic asymptotically flat spacetimes: (i)
rotation of spin polarization in the (X, Y ) plane, and (ii) transmutation between

different particles. We computed in 6,7 the expectation values of the outgoing mass M2
>

operator and of the mode-number operator N>, in the ingoing ground state |O< >.

As for shockwaves (see 8 ) , M2
> and N> have different expectation values than M2

<

and N< . This difference is due to the excitation of the string modes after crossing

the space-time singularity. In other words, the string state is not an eigenstate of
M2

>, but an infinity superposition of one-particle states with different masses. This

is a consequence of the particle transmutation which allows particle masses different

from the initial one.

3. Strings and Multistrings in Cosmological Spacetimes and the Self-

consistent string cosmology

Recently, several interesting progresses in the understanding of string propaga-

tion in cosmological spacetimes have been made 12−21. The classical string equa-
tions of motion plus the string constraints were shown to be exactly integrable in

D-dimensional de Sitter spacetime, and equivalent to a Toda-type model with a po-
tential unbounded from below. In 2+1 dimensions, the string dynamics in de Sitter

spacetime is exactly described by the sinh-Gordon equation.

Exact string solutions were systematically found by soliton methods using the
linear system associated to the problem (the so-called dressing method in soliton

theory) 13,14. In addition, exact circular string solutions were found in terms of elliptic
functions15. All these solutions describe one string, several strings or even an infinite

number of different and independent strings. A single world-sheet simultaneously
describes many different strings. This is a new feature appearing as a consequence of

the interaction of the strings with the spacetime geometry. Here, interaction among
the strings (like splitting and merging) is neglected, the only interaction is with the



curved background. Different types of behaviour appear in the multistring solutions.
For some of them the energy and proper size are bounded (‘stable strings’) while

for many others the energy and size blow up for large radius of the universe (R →
∞, ‘unstable strings’). In addition, such stable and unstable string behaviours are

exhibited by the ring solutions found in 17 for Friedmann-Robertson-Walker (FRW)
universes and for power type inflationary backgrounds. In all these works, strings

were considered as test objects propagating on the given fixed backgrounds.

We report here the recent results 5 further in the investigation of the physical prop-
erties of the string solutions above mentioned. We compute the energy-momentum

tensor of these strings and we use it to find the back reaction effect on the spacetime.
That is, we investigate whether these classical strings can sustain the correspond-

ing cosmological background. This is achieved by considering self-consistently, the
strings as matter sources for the Einstein (general relativity) equations (without the

dilaton field), as well as for the string effective equations (beta functions) including
the dilaton, the dilaton potential and the central charge term.

In spatially homogeneous and isotropic universes,

ds2 = (dT )2 − R(T )2
D−1
∑

i=1

(dX i)2 (17)

the string energy-momentum tensor T B
A (X) , (A, B = 1, . . .D) for our string solutions

takes the fluid form, allowing us to define the string pressure p through −δk
i p = T k

i

and the string energy density as ρ = T 0
0 . The continuity equation DA TB

A = 0 takes
then the form

ρ̇ + (D − 1) H (p + ρ) = 0, (18)

where H ≡ d log R
dT

. We consider D = 1 + 1, D = 2 + 1, and generic D−dimensional

universes.
In 1+1 cosmological spacetimes we find the general solution of the string equations

of motion and constraints for arbitrary expansion factor R . It consists of two families:
one depends on two arbitrary functions f±(σ ± τ) and has constant energy density ρ

and negative pressure p = −ρ. That is, a perfect fluid relation holds

p = (γ − 1)ρ (19)

with γ = 0 in D = 1 + 1 dimensions. The other family of solutions depends on two

arbitrary constants and describes a massless point particle (the string center of mass).
This second solution has p = ρ = u R−2 > 0 . This is a perfect fluid type relation

with γ = 2. These behaviours fulfil the continuity equation (18) in D = 2.
In 2 + 1 dimensions and for any factor R , we find that circular strings exhibit

three different asymptotic behaviours :

• (i) unstable behaviour for R → ∞ in inflationary universes (this corresponds
to conformal time η ∼ τ → τ0 with finite τ0 and proper string size S ∼ R → ∞),



for which the string energy Eu ∼ R → ∞ and the string pressure pu ≃ −Eu/2 →
−∞ is negative . This behavior dominates for R → ∞ in inflationary universes.

• (ii) Dual to unstable behaviour for R → 0. This corresponds to η ∼ (τ −
τ0)

−1 → +∞ for finite τ → τ0, S ∼ R → 0 (except for de Sitter spacetime

where S → 1/H ), for which the string energy Ed ∼ 1/R → ∞ and the string
pressure pd ≃ E/2 → +∞ , is positive.

• (iii) Stable for R → ∞, (corresponding to η → ∞, τ → ∞, S = constant ),

for which the string energy is Es = constant and the string pressure vanishes
ps = 0 .

Here the indices (u, d, s) stand for ‘unstable’, ‘dual’ and ‘stable’ respectively. The
behaviours (i) and (ii) are related by the duality transformation R ↔ 1/R , the case

(ii) being invariant under duality. In the three cases, we find perfect fluid relations
(19) with the values of γ :

γu = 1/2 , γd = 3/2 , γs = 1 . (20)

For a perfect gas of strings on a comoving volume R2, the energy density ρ is pro-
portional to E/R2, which yields the scaling ρu = u R−1, ρd = d R−3, ρs = s R−2. All

densities and pressures obey the continuity equation (18) as it must be.
The 1+1 and 2+1 string solutions here described exist in any spacetime dimension.

Embedded in D-dimensional universes, the 1+1 and 2+1 solutions describe straight
strings and circular strings, respectively. In D-dimensional spacetime, strings may

spread in D − 1 spatial dimensions. Their treatment has been done asymptotically
in 20. We have three general asymptotic behaviours:

• (i) unstable for R → ∞ in inflationary universes with ρu = u R2−D, pu =
−ρu/(D − 1) < 0

• (ii) Dual to unstable for R → 0 with ρd = d R−D, pd = ρd/(D − 1) > 0 .

• (iii) Stable for R → ∞, with ρs = s R1−D, ps = 0 .

We find perfect fluid relations with the factors

γu =
D − 2

D − 1
, γd =

D

D − 1
, γs = 1 . (21)

This reproduces the two dimensional and three dimensional results for D = 2 and
D = 3, respectively. The stable regime is absent for D = 2 due to the lack of string

transverse modes there.
The dual strings behave as radiation (massless particles) and the stable strings

are similar to cold matter. The unstable strings correspond to the critical case of the



so called coasting universe. That is, classical strings provide a concrete realization of
such cosmological models.

Strings continuously evolve from one type of behaviour to another, as is explicitly
shown by our solutions 12,15. For intermediate values of R, the string equation of state

is clearly more complicated. We propose a formula of the type:

ρ =

(

uR R +
d

R
+ s

)

1

RD−1
, p =

1

D − 1

(

d

R
− uR R

)

1

RD−1
(22)

where

lim
R→∞

uR =
{

0 FRW
u∞ 6= 0 Inflationary

(23)

is qualitatively correct for all R and becomes exact for R → 0 and R → ∞. The
parameter uR varies smoothly with R and tends to the constant u∞ for R → ∞.

We stress here that we obtained the string equation of state from the exact string
evolution in cosmological spacetimes.

Inserting the equation of state (22) in the Einstein-Friedmann equations of general
relativity, we obtain a self-consistent solution for R as a monotonically increasing

function of the cosmic time T

T =

√

(D − 1)(D − 2)

2

∫ R

0
dR

RD/2−1

√
uR R2 + d + s R

(24)

where we set R(0) = 0. This string dominated universe starts at T = 0 with a

radiation dominated regime R(T )
T→0≃ CD (T )

2

D , then the universe expands for large

T as R(T )
T→∞≃ C ′

D (T )
2

D−1 , as (cold) matter dominated universes. For example, at
D = 4, R grows as R ∼ (T )

2

3 .

It must be noticed that an universe dominated by unstable strings (uR) would

yield R(T )
T→∞≃ C ′

D (T )
2

D−2 , which is faster than (cold) matter dominated universes.

However, this is not a self-consistent solution of the Einstein-Friedmann equations

plus the string equations of motion, as shown in 5.
The unstable string solutions are called in this way since their energy and invariant

length grow as R for large R. However, it must be clear that as classical string
solutions they never decay.

Our self-consistent solution R(T ) yields the realistic matter behaviour R(T )
T→∞∼

(T )
2

D−1 .
The stable strings (which behave as cold matter) are those dominating for R →

∞. The ‘dual’ strings give R(T )
T→0≃ CD (T )

2

D , the radiation type behaviour. For

intermediate R, the three types of string behaviours (unstable, dual and stable) are
present. Their cosmological implications as well as those associated with string decay

deserve investigation. For a thermodynamical gas of strings the temperature T as a
function of R, scales as 1/R for small R (the usual radiation behaviour).



For the sake of completeness we analyze the effective string equations in 5. These
equations have been extensively treated in the literature and they are not our central

aim.
It must be noticed that there is no satisfactory derivation of inflation in the

context of the effective string equations. This does not mean that string theory is
not compatible with inflation, but that the effective string action approach is not

enough to describe inflation. The effective string equations are a low energy field

theory approximation to string theory containing only the massless string modes.
The vacuum energy scales to start inflation are typically of the order of the Planck

mass where the effective string action approximation breaks down. One must also
consider the massive string modes (which are absent from the effective string action)

in order to properly get the cosmological condensate yielding inflation. De Sitter
inflation does not emerge as a solution of the the effective string equations.

4. Conclusions

Strings in curved spacetimes show a rich variety of new behaviours unknown in

flat spacetimes. The most spectacular effect is clearly given by the unstable strings

with size and energy tending to infinity. This phenomenon appears both for singular
plane wave spacetimes and for non-singular de Sitter spacetimes and for all other

inflationary universes. We think that it is a generic feature for strings in strong
gravitational fields.

Comparison of the energy-momentum behaviours in inflationary universes and
singular plane-waves show interesting differences. We find for the fastest growing

energy-momentum components in singular plane-waves (β ≥ 2) 6:

T V V (σ, τ)
τ→0
= CV [ξ(τ)]2

∫ 2π

0
[BX(σ)]2 → ∞

T V X(σ, τ)
τ→0
= CX ξ(τ)

∫ 2π

0
BX(σ) → ∞ (25)

where
ξ(τ) ≡ |τ |−β/4 exp[K|τ |1−β/2] → ∞

and CV and CX are constants.

A typical unstable string behaviour on an inflationary spacetime with scale factor

R(T ) = a T
k

k+2 (k < 0) is as follows 2.

E
τ→0
=

C

α′ τk/2 =
R

α′ → +∞
P

τ→0
= −E/2 → −∞

S
τ→0
= τk/2 → +∞ (26)

where C is a constant and we considered a ring solution for simplicity.



The main difference is that in singular plane wave spacetimes only the null energy
(conjugated to the null variable V ) diverges. In the inflationary case, both the energy

(T 0
0 ) and the pressure (−T i

i , not summed) diverge and they blow up at the same rate.
Obviously the kind of spacetime singularity is very different.
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