
ar
X

iv
:h

ep
-t

h/
95

05
14

5 
v1

   
23

 M
ay

 9
5

Imperial/TP/94-95/35
hep-th/9505145

Closed strings
in uniform magnetic field backgrounds

A.A. Tseytlin⋆†

Theoretical Physics Group, Blackett Laboratory

Imperial College, London SW7 2BZ, U.K.

Abstract

We consider a class of conformal models describing closed strings in axially symmetric
stationary magnetic flux tube backgrounds. These models are closed string analogs of the
Landau model of a particle in a magnetic field or the model of an open string in a constant
magnetic field. They are interesting examples of solvable unitary conformal string theo-
ries with non-trivial 4-dimensional curved space-time interpretation. In particular, their
quantum Hamiltonian can be expressed in terms of free fields and the physical spectrum
and string partition function can be explicitly determined. In addition to the presence of
tachyonic instabilities and existence of critical values of magnetic field the closed string
spectrum exhibits also some novel features which were absent in the open string case.
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1. Introduction

The study of behavior of systems of particles and fields in an external uniform mag-

netic field is one of the basic problems in theoretical physics and has long history. Like

temperature, the magnetic field plays the role of a probe which may be used to reveal var-

ious properties of a system. A remarkable feature of the uniform magnetic field problems

in quantum mechanics and QED is their solvability1,2. That applies to certain extent also

to gauge theories in abelian magnetic environment various aspects of which (possibility of

restoration of broken symmetry, instability of magnetic background in non-abelian models,

formation of vacuum condensates, etc.) were extensively studied in the past3−6.

It is interesting to try to address a similar problem in the context of string theory

(with one of the standard motivations that this may eventually help us to learn about

its possible phase structure). The reason why the quantum-mechanical or field-theoretic

problem of a particle in a uniform abelian (electro)magnetic field is exactly solvable is that

the action I =
∫

dτ [ẋµẋµ + iẋµAµ(x)] (which determines the Hamiltonian in quantum

mechanics and the heat kernel in field theory) becomes gaussian if the field strength is

constant,

Aµ = −1
2Fµνx

ν , Fµν = const .

The same is true also in (abelian) open string theory where the interaction takes place

only at the boundary points

I =
1

4πα′

∫

d2σ ∂ax
µ∂axµ + i

∫

dτ Aµ(x)ẋµ ,

and thus the resulting gaussian path integral can be computed exactly7. This is a consistent

‘on-shell’ problem since Fµν = const is an exact solution of the effective field equations7

of the open string theory. Indeed, the corresponding 2d world-sheet theory represents

a conformal field theory8 which can be solved explicitly in terms of free oscillators thus

representing a generalization of the Landau problem in quantum particle mechanics. As

a result, one is able to determine the spectrum of an open string moving in a constant

magnetic field8,9,10.

A novel feature of this spectrum as compared to the free string spectrum is the presence

of new tachyonic states above certain critical values of the magnetic field8,10. That implies

that the constant magnetic field background is unstable in the open string theory as it is

in the non-abelian gauge theory5. The qualitative reason for this instability is that the free

open string contains electrically charged higher spin massive particle states. The latter are

expected to have (approximately) the Landau spectrum

M2 = M2
0 +QH(2l + 1 − gS) ,
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where Q is the charge (the same for all open string states), H is magnetic field in x3

direction, g is a gyromagnetic ratio (the effective weak field value of g is 2 for the non-

minimally coupled higher spin open string states11), S is the x3-component of the spin

and l = 0, 1, 2, ..., is the Landau level. Thus M2 can become negative for large enough

values of H, i.e., H > Hcr = M2
0 /Q for spin 1 charged states. That applies, for example, to

W -bosons in the context of electroweak theory6 suggesting the presence of a transition to a

phase with a W -condensate (at higher critical field where Higgs field becomes massless the

full electroweak symmetry is restored6). Note that in the case of unbroken gauge theory

with massless charged vector particles the instability is present for any (e.g., infinitesimal)

value of the magnetic field5. Such ‘infinitesimal’ instability is thus to be expected in the

open string theory with non-abelian Chan-Paton symmetry (where the constant magnetic

field problem does not appear to be easily solvable) and in closed string theory (discussed

below).

The infra-red instability of a magnetic background is not cured by supersymmetry,

i.e. it remains also in supersymmetric gauge theories (e.g., in ultra-violet finite N = 4

supersymmetric Yang-Mills theory12) since the small fluctuation operator for the gauge

field −δµνD
2 − 2Fµν still has negative modes due to the ‘anomalous magnetic moment’

term. This is not surprising given that the magnetic field breaks Lorentz invariance and

supersymmetry. This instability is indeed present in the Neveu-Schwarz sector of the

open superstring theory10 (the fermionic Ramond states remain non-tachyonic as in field

theory).

Assuming that it is important to try to generalize the open string results to the case

of realistic closed models (see, e.g., ref.13) the main question7, however, is whether the

uniform magnetic field problem is actually tractable in closed string theories. An apparent

answer is ‘no’ since the abelian vector field must now be coupled to the internal points of

the string and such interaction terms, e.g.,

L = ∂ay∂
ay + Aµ(x)∂ax

µ∂ay + ... ,

in bosonic string or type II superstring (y is a compact internal Kaluza-Klein field that

‘charges’ the string), or

L = ψ̄γa[∂a + Aµ(x)∂ax
µ]ψ + ... ,

in the heterotic string, do not become gaussian for Aµ = −1
2Fµνx

ν .

One should note, however, that in contrast to the tree level abelian open string case,

the Fµν = const background in flat space does not represent a solution of a closed string

theory, i.e. the above interaction terms added to the free string Lagrangians do not give

conformally invariant 2d σ-models. Indeed, since the closed string theory contains gravity,

a uniform magnetic field which has a non-vanishing energy must curve the space (as well

as possibly induce other ‘massless’ backgrounds). One should thus first find a consistent
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conformal model which is a closed string analog of the uniform magnetic field background

in the flat space field (or open string) theory and then address the question of its solvability.

Remarkably, it turns out14−16 that extra terms which should be added to the above closed

string actions in order to satisfy the conformal invariance condition (i.e. to satisfy the

closed string effective field equations) produce exactly solvable 2d models!

In order to try construct conformal σ-models which can be interpreted as describ-

ing closed string in a uniform magnetic field background it is useful to look at possible

‘magnetic’ solutions of low-energy effective string equations. There is a simple analogue

of a uniform magnetic field background in the Einstein-Maxwell theory: the static cylin-

drically symmetric Melvin ‘magnetic universe’ or ‘magnetic flux tube’ solution17. It has

R4 topology and can be considered19 as a gravitational analog of the Abrikosov-Nielsen-

Olesen vortex18 with the magnetic pressure (due to repulsion of Faraday’s flux lines) being

balanced not by Higgs field but by gravitational attraction. The magnetic field is approxi-

mately constant inside the tube and decays to zero at infinity in the direction orthogonal to

x3-axis. Several interesting features of the Melvin solution in the context of Kaluza-Klein

(super)gravity (e.g., instability against monopole or magnetic black hole pair creation)

were discussed ref.19 (see also ref.20). This Einstein-Maxwell (‘a = 0’ Melvin) solution has

two straightforward analogs21 among solutions of low-energy closed string theory (heterotic

string or D > 4 bosonic string or superstring toroidally compactified to D = 4). In what

follows we shall mostly consider the case when the magnetic field has Kaluza-Klein origin.

Assuming x5 = y is a compact internal coordinate, the D = 5 string effective action can

be expressed in terms of D = 4 fields: metric Gµν , dilaton φ, antisymmetric tensor Bµν ,

two vector fields Aµ and Bµ (related to G5µ and B5µ) and the ‘modulus’ σ. The dilatonic

(‘a = 1’) and Kaluza-Klein (‘a =
√

3’) Melvin solutions have zero Bµν but φ or σ being

non-constant.

In addition to the Melvin solutions, the string theory equations admits also another

natural uniform magnetic field solution22,14 which has Bµν 6= 0 and thus has no counterpart

in the Einstein-Maxwell theory. It can be considered as a direct closed string analog of

the Fµν = const solution of the Maxwell theory since here the magnetic field is indeed

constant (and covariantly constant) throughout the space (dilaton is constant as well).

Its metric ds2 = −(dt + Aidx
i)2 + dxidx

i + dx2
3, Ai = −1

2Fijx
j , (i = 1, 2) is that of a

product of a real line R and the Heisenberg group space H3, and the antisymmetric tensor

field strength is equal to the constant magnetic field Htij = Fij = const. a

a There are also other non-uniform magnetic monopole type string backgrounds which will not

be discuss here (see, in particular, ref.23). In addition to the a = 0 Melvin solution, another

homogeneous magnetic solution of the Einstein-Maxwell theory (which, however, is of less interest

since it does not have R4 topology) is the Robinson-Bertotti one, i.e. (AdS)2×S2 with covariantly

constant monopole-type magnetic field Fθϕ = b sin θ on S2. It has an exact string counterpart24

which is a product of the two conformal theories: “(AdS)2” (SL(2,R)/Z WZW) and “monopole”25

(SU(2)/Zm WZW) ones. Other monopole-type string solutions were considered in26.
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It turns out that the above three basic uniform magnetic field backgrounds (‘constant

magnetic field’, ‘a = 1 Melvin’ and ‘a =
√

3 Melvin’) are exact string solutions to all orders

in α′. The conformal D = 5 bosonic σ-models which describe them are22,14−16 are (the

corresponding superstring and heterotic string models22,14−16 have similar structure)

L(const) = −∂t∂̄t+ βǫijx
i∂̄xj(∂y − ∂t) + ∂xi∂̄x

i + ∂y∂̄y + ∂x3∂̄x3 + Rφ0

= −∂t∂̄t+ βρ2∂̄ϕ(∂y − ∂t) + ∂ρ∂̄ρ+ ρ2∂ϕ∂̄ϕ+ ∂y∂̄y + ∂x3∂̄x3 + Rφ0 , (1.1)

L(a=1) = −∂t∂̄t+ ∂ρ∂̄ρ+ F (ρ)ρ2(∂ϕ+ 2α∂y)∂̄ϕ+ ∂y∂̄y + ∂x3∂̄x3 + Rφ(ρ) , (1.2)

e2(φ−φ0) = F (ρ) = (1 + α2ρ2)−1 ,

L(a=
√

3) = −∂t∂̄t+ ∂ρ∂̄ρ+ ρ2(∂ϕ+ q∂y)(∂̄ϕ+ q∂̄y) + ∂y∂̄y + ∂x3∂̄x3 + Rφ0 . (1.3)

Here x1 + ix2 = ρeiϕ, ϕ ∈ (0, 2π) are coordinates of 2-plane orthogonal to the direction of

the magnetic field and y ∈ (0, 2πR) is the Kaluza-Klein coordinate used (the charges of

string states are proportional to R−1). The the constants α, β, q determine the strength

of the abelian magnetic (and other) background fields.

The model (1.1) is a special case of the following model (u ≡ y − t, v ≡ y + t,

i, j = 1, .., D− 1)

L = ∂u∂̄v + ∂xi∂̄xi + 2Ai(x)∂̄x
i∂u+ Rφ0 , (1.4)

where the interaction term is reminiscent of the open string coupling. Indeed, (1.4) is con-

formal to all orders22 if ∂iF
ij = 0, i.e., in particular, if Ai = −1

2Fijx
j ((1.1) corresponds to

Fij = βǫij , i, j = 1, 2). The conformal invariance of (1.4) is due to the special chiral ‘null’

structure of the interaction term. When y is non-compact (so that instead of describing

a D-dimensional magnetic background (1.4) has D + 1-dimensional plane wave interpre-

tation) and Fij = const (1.4), can be identified with the Lagrangian of the WZW model

based on non-semisimple algebra [ei, ej ] = Fijev, [ei, eu] = Fijej , [ei, ev] = [eu, ev] = 0

which admits non-degenerate invariant bilinear form, (ei, ej) = δij , (eu, ev) = 1
2

((1.1)

corresponds to the Ec
2 theory of ref.27). The solvability of the constant field model (1.4)

or (1.1) is related to the fact that the path integral over v leads to a constraint on u so

that the model effectively becomes gaussian in xi.

Although the models (1.2) and (1.3) look quite different from (1.1), we shall explain

below that all of them belong to one 3-parameter (α, β, q) class of string models which are

conformally invariant and, moreover, exactly solvable16. They can thus be considered as

closed string analogs of the solvable ‘open string in constant magnetic field’ model. In spite

of their apparently non-gaussian form they are related (by formal duality transformations)

to simpler flat models (this partially is the reason for their solvability). As in the open

string case, here one is able to express the corresponding conformal field theory opera-

tors in terms of the free creation/annihilation operators and to explicitly determine the
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string spectrum14,16. These models appear to be simpler than coset CFT’s corresponding

to semisimple gauged WZW models (for reviews of solvable (super)string models based

on semisimple coset CFT’s see, e.g., refs.28,29). For example, their unitary is easy to

demonstrate because of the existence of a light-cone gauge. These models (together with

plane-wave type WZW models for non-semisimple groups27,30−34) are thus among the first

few known examples of solvable unitary conformal string models with non-trivial D = 4

curved space-time interpretation.

Below we shall first discuss the target space interpretation of the above models as

representing a class of exact stationary axisymmetric magnetic flux tube solutions of string

effective equations (Section 2). Then in Section 3 we shall construct the conformal σ-

models describing the magnetic flux tube solutions by starting with flat space model and

using world-sheet angular duality. This will help to solve the corresponding classical string

equations explicitly, expressing the string coordinates in terms of free fields satisfying

‘twisted’ boundary conditions (Section 4.1). After straightforward operator quantization

(Section 4.2) we will find the quantum Virasoro operators. It will then be possible to

determine the spectrum of states and partition function (Section 5), in direct analogy with

how this is done in simpler models like closed string on a torus or an orbifold, or open string

in a constant magnetic field. We shall also discuss some properties of the spectrum, in

particular, the two types of tachyonic instabilities present in this closed string model. Some

concluding remarks (in particular, about superstring and heterotic string generalizations)

will be made in Section 6.

2. Magnetic flux tube solutions of string effective equations

We shall be considering the closed bosonic string (or type II superstring) theory which

has no fundamental gauge fields in a higher dimensional space. The abelian gauge fields

appear upon toroidal compactification when the theory is ‘viewed’ from four dimensions.

The conformal σ-models which describe D = 4 string solutions with non-trivial gauge fields

will thus be higher dimensional ones. The simplest case is that of D = 5 bosonic string

σ-model action (with target space fields not depending on x5) which can be interpreted

as an action of a D = 4 string with an internal degree of freedom (compact Kaluza-Klein

coordinate x5) which describes the coupling to additional vector (and scalar) background

fields,

I5 =
1

πα′

∫

d2σ
[

(GMN +BMN )(X)∂XM ∂̄XN + Rφ(X)
]

(2.1)

=
1

πα′

∫

d2σ
[

(Ĝµν +Bµν)(x)∂xµ∂̄xν + e2σ(x)[∂y + Aµ(x)∂xµ][∂̄y + Aν(x)∂̄xν ]

+ Bµ(x)(∂xµ∂̄y − ∂̄xµ∂y) + Rφ(x)
]

,
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where XM = (xµ, x5), xµ = (t, xi, x3), x5 ≡ y, R ≡ 1
4α

′√γR(2) and

Ĝµν ≡ Gµν −G55AµAν , G55 ≡ e2σ , Aµ ≡ G55Gµ5 , Bµ ≡ Bµ5 . (2.2)

From the point of view of the low-energy effective field theory, this decomposition corre-

sponds to starting with the D = 5 bosonic string effective action and assuming that one

spatial dimension x5 is compactified on a small circle. Ignoring the massive Kaluza-Klein

modes one then finds the following dimensionally reduced D = 4 action (see, e.g., ref.35)

S4 =

∫

d4x
√

Ĝ e−2Φ
[

R̂ + 4(∂µΦ)2 − (∂µσ)2 (2.3)

− 1
12

(Ĥµνλ)2 − 1
4
e2σ(Fµν(A))2 − 1

4
e−2σ(Fµν(B))2 +O(α′)

]

,

Fµν(A) = 2∂[µAν] , Fµν(B) = 2∂[µBν] , (2.4)

Ĥλµν = 3∂[λBµν] − 3A[λFµν](B) , Φ = φ− 1
2σ .

Given a conformal D = 5 σ-model and rewriting its action as in (2.1) one can read off the

expressions for the corresponding D = 4 background fields which then must represent a

solution of the effective equations following from (2.3). These equations have, in particular,

the following 3-parameter (α, β, q) class of stationary axisymmetric (electro)magnetic flux

tube solutions16 (xµ = (t, ρ, ϕ, x3))

ds24 = −dt2 + F (ρ)ρ2(dϕ− αdt)(dϕ− βdt)

− 1
4F (ρ)F̃ (ρ)ρ4

[

(α− β − 2q)dϕ+ q(α+ β)dt
]2

+ dρ2 + dx2
3 , (2.5)

A = −1
2
F̃ (ρ)ρ2[(α− β − 2q)dϕ+ q(α+ β)dt] , (2.6)

B = −1
2
F (ρ)ρ2[(α+ β)dϕ− (2αβ + qα− qβ)dt] ,

e2(φ−φ0) = F (ρ) , e2σ =
F (ρ)

F̃ (ρ)
, B = −1

2
(α− β)F (ρ)ρ2dϕ ∧ dt , (2.7)

F (ρ) ≡ 1

1 + αβρ2
, F̃ (ρ) ≡ 1

1 + q(q + β − α)ρ2
.

The metric is stationary and, in general, describes a rotating ‘universe’. For generic val-

ues of the parameters the two abelian gauge fields contain both magnetic and electric

components with the former being more ‘fundamental’ (there are no solutions when both

gauge fields are pure electric). For simplicity we shall call these solutions ‘magnetic flux

tube backgrounds’. The three simplest uniform pure magnetic field solutions mentioned

in Section 1 are the following special cases (cf.(1.1)–(1.3)): (i) ‘constant magnetic field’

(q = α = 0, β 6= 0):

ds24 = −(dt+ 1
2βρ

2dϕ)2 + dρ2 + ρ2dϕ2 + dx2
3 , (2.8)
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A = −B = 1
2βρ

2dϕ , σ = φ− φ0 = 0 , B = 1
2βρ

2dϕ ∧ dt , Ĥtij = Fij ,

(ii) ‘a = 1 Melvin’ (α = β = q 6= 0):

ds24 = −dt2 + dρ2 + F 2(ρ)ρ2dϕ2 + dx2
3 , (2.9)

A = −B = αF (ρ)ρ2dϕ , B = 0 , σ = 0 , e2(φ−φ0) = F = (1 + α2ρ2)−1 ,

(iii) ‘a =
√

3 Melvin’ (α = β = 0, q 6= 0):

ds24 = −dt2 + dρ2 + F̃ (ρ)ρ2dϕ2 + dx2
3 , (2.10)

A = qF̃ (ρ)ρ2dϕ , B = 0 , B = 0 , φ = φ0 , e2σ = F̃−1 = 1 + q2ρ2 .

In addition to the q = 0 subclass of pure magnetic backgrounds (where A has constant field

strength) which generalize (2.8), there are two other special subclasses: α = q (stationary

metric, non-zero Bµν , zero σ) and α = β (static metric, zero Bµν , non-zero σ). Solutions

with αβ ≥ 0, q(q + β − α) ≥ 0 have no curvature singularities.

The above leading-order solutions (2.5)–(2.7) are actually exact to all orders in α′

since it turns out that they correspond (according to (2.1)) to conformal D = 5 σ-models

discussed in the next section.b

3. Conformal string models describing flux tube backgrounds

The three conformal D = 5 σ-models that correspond to the D = 4 solutions

(2.8),(2.9),(2.10) according to (2.1) are indeed (1.1),(1.2),(1.3). All three models have

free-theory central charge. In the case of non-compact y, i.e. in the limit R → ∞, they

are equivalent to other known models. The constant field model (1.1) becomes the ‘plane-

wave’ Ec
2 WZW model27 with the corresponding CFT discussed in refs.31,14,36. The a = 1

Melvin model15 (1.2) with coordinates formally taken to be non-compact can be identified

with a particular limit of [SL(2, R) × R]/R gauged WZW (‘black string’37) modelc or,

equivalently, with the Ec
2/U(1) coset theory32. The R = ∞ case of the a =

√
3 Melvin

model (1.3) is identical to the flat space model after the redefinition of ϕ.

The solvability of the general 3-parameter (α, β, q) class of string models corresponding

to (2.5)–(2.7) can be understood by using their relation via duality and formal coordinate

b This class of solutions was actually found16 not by solving the complicated equations which

follow from (2.3) but by explicitly constructing the corresponding D = 5 conformal σ-model

discussed below. Similar approach to constructing exact string solutions was used in ref.22.
c In this limit k → ∞ and the mass and charge of ‘black string’ vanish but simultaneous

rescalings of coordinates give rise to a nontrivial model.
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shifts to flat space models. Consider, for example, the σ-model which a direct product of

D = 2 Minkowski space and D = 2 ‘dual 2-plane’

Ĩ =
1

πα′

∫

d2σ
[

∂u∂̄v + ∂ρ∂̄ρ+ ρ−2∂ϕ̃∂̄ϕ̃+ R(φ0 − ln ρ)
]

. (3.1)

ϕ̃ should have period 2πα′ to preserve equivalence of the ‘dual 2-plane’ model to the flat

2-plane CFT38, i.e. to the flat space modeld

I0 =
1

πα′

∫

d2σ
(

∂u∂̄v + ∂ρ∂̄ρ+ ρ2∂ϕ̂∂̄ϕ̂+ Rφ0

)

. (3.2)

If we now make coordinate shifts and add a constant antisymmetric tensor term we obtain

from (3.1) (α, β, q are free parameters of dimension cm−1)

Ĩ =
1

πα′

∫

d2σ
[

(∂u+ α∂ϕ̃)(∂̄v + β∂̄ϕ̃) + ∂ρ∂̄ρ+ ρ−2∂ϕ̃∂̄ϕ̃

+ 1
2q[∂(u+ v)∂̄ϕ̃− ∂̄(u+ v)∂ϕ̃] + R(φ0 − ln ρ)

]

. (3.3)

The two models (3.1) and (3.3) are of course ‘locally-equivalent’; in particular, (3.3) also

solves the conformal invariance equations. However, if u and v are periodic, i.e. if u and

v are given by

u ≡ y − t , v ≡ y + t , y ∈ (0, 2πR) , (3.4)

then the ‘shifted’ coordinates u+αϕ̃ and v+βϕ̃ are not globally defined for generic α and

β (the periods of y = 1
2 (u+ v) and ϕ are different) and the torsion term is non-trivial for

q 6= 0. As a result, the conformal field theories corresponding to (3.1) and (3.3) will not

be equivalent. The O(3, 3;R) duality transformation with continuous coefficients which

relates the model (3.3) to the flat space one (3.2) is not a symmetry of the flat CFT,

i.e. leads to a new conformal model which, however, is simple enough to be explicitly

solvable16.

Starting with (3.3) and making the duality transformation in ϕ̃ one obtains a more

complicated σ-model (πα′I ≡
∫

d2σL)

L = F (ρ)(∂u− αρ2∂ϕ′)(∂̄v + βρ2∂̄ϕ′) + ∂ρ∂̄ρ+ ρ2∂ϕ′∂̄ϕ′ (3.5)

+ ∂x3∂̄x3 + R(φ0 + 1
2 lnF ) ,

d The two models are equivalent in the sense of a relation of classical solutions and equality

of the correlators of certain operators (e.g., ∂ϕ̃ and ρ2∂ϕ) but the spectra of states are formally

different (see also ref.39): the spectrum is continuous on 2-plane and discrete on dual 2-plane (with

duality relating states with given orbital momentum on 2-plane and states with given winding

number on dual 2-plane).
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F−1 = 1 + αβρ2 , ϕ′ ≡ ϕ+ 1
2q(u+ v) .

Here ϕ ∈ (0, 2π) is the periodic coordinate dual to ϕ̃ and we have also added a free x3-

coordinate term. Since the periods of ϕ and y = 1
2(u + v) are, in general, different ϕ′ is

not globally defined. The theory (3.5) is conformally invariant to all orders in α′. For the

purpose of demonstrating this one may ignore the difference between ϕ′ and ϕ (i.e. may

set q = 0 or consider y to be non-compact). Then (3.5) becomes equivalent to a special

case of the ‘generalized F -model’ which was shown to be conformally invariant22.

It is the σ-model (3.5) that defines the string theory corresponding to the class of

D = 4 magnetic flux tube backgrounds (2.5)–(2.7). The models (1.1),(1.2),(1.3) are the

special cases of (3.5): α = q = 0, α = β = q and α = β = 0).

4. Solution of the string models

The relation of the class of string models (3.5) to the flat space model via formal

duality and coordinate shifts makes possible to solve the classical string equations (which

look quite complicated) explicitly. The fact that the two dual models have related classical

solutions enables to express the solution in terms of free fields satisfying ‘twisted’ boundary

conditions14,16. One can then proceed to straightforward operator quantization (fixing,

e.g., a ‘light-cone’ gauge). Some of the resulting expressions are similar to those appearing

in the simpler cases of open string theory in a constant magnetic field8 or R2/ZN orbifold

model40.

4.1. Solution of the classical equations on the cylinder

Introducing the free field X = X1 + iX2 such that

L0 = ∂+ρ∂−ρ+ ρ2∂+ϕ̂∂−ϕ̂ = ∂+X∂−X
∗ , X ≡ ρeiϕ̂ ,

ρ2 = XX∗ , ϕ̂ =
1

2i
ln

X

X∗ , X = X+(σ+) +X−(σ−) , σ± = τ ± σ , (4.1)

we can represent the solution of equations following from (3.1) in the form

∂±ϕ̃ = ∓ρ2∂±ϕ̂ = ± i

2
(X∗∂±X −X∂±X

∗) ,

ϕ̃(σ, τ) = 2πα′[J−(σ−) − J+(σ+)] +
i

2

(

X+X
∗
− −X∗

+X−
)

, (4.2)

J±(σ±) ≡ i

4πα′

∫ σ±

0

dσ±
(

X±∂±X
∗
± −X∗

±∂±X±
)

.

Then the solution of the string equations corresponding to (3.5) is

u = U+ + U− − αϕ̃ , v = V+ + V− − βϕ̃ , x ≡ ρeiϕ = e−iq(u+v)eiαV−−iβU+X, (4.3)
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where U± and V± are arbitrary functions of σ±. The closed string boundary condition on

the cylinder x(σ + π, τ) = x(σ, τ) implies that the free field X = X+ +X− must satisfy

the “twisted” condition

X(σ + π, τ) = eiγπX(σ, τ) , X± = e±iγσ±X± , X±(σ± ± π) = X±(σ±) , (4.4)

where X± = X±(σ±) are free fields with standard periodic boundary conditions

X+ = i
√

α′/2

∞
∑

n=−∞
ãn exp(−2inσ+) , X− = i

√

α′/2

∞
∑

n=−∞
an exp(−2inσ−) . (4.5)

Since y = 1
2
(u+ v) is compactified on a circle of radius R,

u(σ + π, τ) = u(σ, τ) + 2πwR , v(σ + π, τ) = v(σ, τ) + 2πwR , w = 0,±1, ...,

where w is the winding number. As a result,

U± = σ±p
u
± + U ′

± , V± = σ±p
v
± + V ′

± , (4.6)

pu
± = ±(wR− α′αJ) + pu , pv

± = ±(wR − α′βJ) + pv ,

where U ′
± and V ′

± are single-valued functions of σ±, pu and pv are arbitrary parameters

(related to the Kaluza-Klein momentum and the energy of the string) and J is the angular

momentum (JL,R ≡ J±(π))

J = JR + JL = −1
2

∑

n

(n+ 1
2
γ)a∗nan − 1

2

∑

n

(n− 1
2
γ)ã∗nãn . (4.7)

Then the ‘twist’ parameter γ in (4.4) is given by

γ = (2q + β − α)wR + βpu + αpv . (4.8)

Evaluating the classical stress-energy tensor on the above solution one finds that it takes

the “free-theory” form T±± = ∂±U±∂±V± + ∂±X∂±X
∗. It is convenient to fix the light-

cone gauge, using the remaining conformal symmetry to gauge away the ‘non zero-mode’

parts U ′
± of U . Then the classical constraints T−− = T++ = 0 can be solved as usual

and determine V ′
± in terms of the free fields X±. The classical expressions for Virasoro

operators L0 = 1
4πα′

∫

dσT−−, L̃0 = 1
4πα′

∫

dσT++ are

L0 =
pu
−p

v
−

4α′ + 1
2

∑

n

(

n+ 1
2
γ
)2
a∗nan , L̃0 =

pu
+p

v
+

4α′ + 1
2

∑

n

(

n− 1
2
γ
)2
ã∗nãn . (4.9)
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4.2. Quantum Virasoro operators

One can now quantize the theory by imposing the standard commutation relations be-

tween canonical momenta and coordinates [Px(σ, τ), x∗(σ′, τ)] = −iδ(σ−σ′), etc. Because

of the duality between (3.3) and (3.5) this turns out to be the same as demanding the

canonical commutation relations for the fields X,X∗ of the free (but globally non-trivial,

cf.(4.4)) theory. As a result, pu, pv and the Fourier modes an, ãn become operators in a

Hilbert space. One finds that

[an, a
∗
m] = 2(n+ 1

2γ)−1δnm , [ãn, ã
∗
m] = 2(n− 1

2γ)−1δnm . (4.10)

pu, pv and thus γ (4.8) commute with an, ãn and can be expressed in terms of the con-

served string energy E =
∫ π

0
dσPt and the quantized Kaluza-Klein linear momentum

py =
∫ π

0
dσPy = m/R, m = 0,±1, ...,

E =
1

2α′ [pu − pv − α′(α+ β)Ĵ ] , py =
1

2α′ [pu + pv + α′(2q + β − α)Ĵ ] , (4.11)

γ = (2q + β − α)wR + α′[(α+ β)mR−1 − (α− β)E] − 1
2α

′q(α+ β)Ĵ . (4.12)

Ĵ is the angular momentum operator obtained by ‘symmetrizing’ the classical J (4.7). The

quantum Virasoro operators L̂0 and ˆ̃L0 (and thus the quantum Hamiltonian Ĥ = L̂0 + ˆ̃L0)

are then given by symmetrized expressions in (4.9).e

The sectors of states can be labeled by the conserved quantum numbers: the energy E,

the angular momentum Ĵ in the x1, x2 plane, and the linear m/R and winding wR Kaluza-

Klein momenta or “charges” (and also by momenta in additional 22 spatial dimensions

which we shall add to saturate the central charge condition). As in the case of the Landau

model or the open string model8, the states with generic values of γ are “trapped” by the

magnetic field. The states in the “hyperplanes” in the (m,w,E, Ĵ) space with |γ| = 2n,

n = 0, 1, ..., are special: for them the translational invariance on the (x1, x2)-plane is

restored with the zero-mode oscillators a0, a
∗
0, ã0, ã

∗
0 being replaced by the zero mode part

of the coordinate x and conjugate linear momentum.

Restricting the consideration to the sector of states with 0 < γ < 2 one can introduce

the normalized creation and annihilation operators (n,m = 1, 2, ...)

[bn±, b
†
m±] = δnm, [b̃n±, b̃

†
m±] = δnm, [b0, b

†
0] = 1 , [b̃0, b̃

†
0] = 1 , (4.13)

e In agreement with the defining relations in (4.4) the expressions for Ĥ , Ĵ and the commuta-

tion relations (4.10) are invariant under γ → γ + 2 combined with the corresponding renaming of

the mode operators an → an+1, ãn → ãn−1.
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b†n+ = a−nω−, bn− = anω+, b0 = 1
2

√
γa0, b̃

†
0 = 1

2

√
γã0, ω± ≡

√

1
2

(

n± 1
2γ

)

.

The Hamiltonian and Virasoro operators then take the form16

Ĥ = L̂0 + ˆ̃L0 = 1
2α

′( − E2 + p2
a + 1

2Q
2
+ + 1

2Q
2
−

)

+N + Ñ − 2c0 (4.14)

−α′[(q + β)Q+ + βE]JR − α′[(q − α)Q− + αE]JL

+ 1
2
α′q

[

(q + 2β)J2
R + (q − 2α)J2

L + 2(q + β − α)JRJL

]

,

L̂0 − ˆ̃L0 = N − Ñ −mw . (4.15)

Here Q± are the left and right combinations of the Kaluza-Klein linear and winding mo-

menta (which play the role of charges in the present context), c0 is the normal ordering

termf

Q± ≡ m

R
± wR

α′ , c0 ≡ 1 − 1
4γ(1 − 1

2γ),

and pa, a = 3, ..., 24 are momenta in additional free spatial dimensions. The operators

N, Ñ and the angular momentum operators JL, JR have the standard ‘free-theory’ form

(ana, ãna correspond to free spatial directions, a = 3, ..., 24)

N =

∞
∑

n=1

n(b†n+bn+ + b†n−bn− + a†naana) , Ñ =

∞
∑

n=1

n(b̃†n+b̃n+ + b̃†n−b̃n− + ã†naãna),

ĴR = −b†0b0 − 1
2 +

∞
∑

n=1

(

b†n+bn+ − b†n−bn−
)

≡ JR − 1
2 → −lR − 1

2 + SR , (4.16)

ĴL = b̃†0b̃0 + 1
2 +

∞
∑

n=1

(

b̃†n+b̃n+ − b̃†n−b̃n−
)

≡ JL + 1
2 → lL + 1

2 + SL, Ĵ = JR + JL = J.

The analogs of the above expressions in the sectors with 2k < γ < 2k + 2, k =integer,

can be found in a similar way by ‘renaming’ the creation and annihilation operators. The

result is the same as in (4.14) with the replacement γ → γ′ = γ − 2k in c0.

It is remarkable that the complicated space-time background (2.5)–(2.7) is associated

with relatively simple CFT described by (4.14). The first line in (4.14) with c0 → 1 is

the Hamiltonian of a free closed string compactified on a circle. The second line (together

with O(J) term in c0, see (4.12)) is the analogue of the gyromagnetic interaction term for

f The normal ordering constant is fixed by the Virasoro algebra. The free-string constant in

L̂0 is shifted from 1 to c0. This corresponds to computing infinite sums using the generalized

ζ-function regularization. Similar shift is found in the open string theory8 and in orbifold models

and is characteristic to the case of a free boson with twisted boundary conditions. It is also

consistent with modular invariance of the partition function.
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a particle in a magnetic field.g Similar term is present in the Hamiltonian of the open
string in a constant magnetic field8

Ĥ(open) = L0 = 1
2α

′( −E2 + p2
a) +N − c0(γ) − γJR , (4.17)

c0 = 1 − 1
4
γ(1 − 1

2
γ) , γ ≡ 2

π
|arctan(2α′πQ1β) + arctan(2α′πQ2β)| ,

where Q1, Q2 are charges at the two ends of the open string, N and ĴR have the same
form as in (4.16) and β is proportional to the magnetic field, Fij = βǫij . The O(J2) terms
in the third line of (4.14) (and in c0) are special to closed string theory.h

In the special cases corresponding to the ‘constant magnetic field’ model (1.1), (2.8),
and the a = 1 and a =

√
3 Melvin models (1.2), (2.9) and (1.3), (2.10) the Hamiltonian

(4.14) takes the following form

α = q = 0 : Ĥ = Ĥ0 − 2c0(γ) − α′β(Q+ + E)JR , γ = α′β(Q+ +E) , (4.18)

Ĥ0 ≡ 1
2α

′( − E2 + p2
a + 1

2Q
2
+ + 1

2Q
2
−

)

+N + Ñ ,

α = β = q : Ĥ = Ĥ0 − 2c0(γ) − 2α′αQ+JR − α′αE(JR + JL) (4.19)

+ 1
2
α′α2(JR + JL)(3JR − JL) , γ = α′α[Q+ − α(JR + JL)] ,

α = β = 0 : Ĥ = Ĥ0 − 2c0(γ) − α′q(Q+JR +Q−JL) + 1
2α

′q2(JR + JL)2 , (4.20)

γ = 2qwR .

Note that presence of the O(γ2) normal ordering term in c0 in (4.14) implies (see (4.12))
that the quantum Hamiltonians (4.14),(4.18)–(4.20) contain just one O(α′2) term which is
of higher order in α′ than other ‘semiclassical’ terms.i

5. String spectrum and partition function

Using (4.14),(4.15) to define the Virasoro constraints

L̂0 = ˆ̃L0 = 0 → Ĥ = 0 , N − Ñ = mw , (5.1)

g The EJL,R and α′E2 terms (explicit in (4.14) and implicit in c0 through its dependence on

γ) reflect the non-static nature of corresponding subclass of backgrounds (which in turn is related

to the presence of the non-vanishing antisymmetric tensor).
h It is clear from the above construction that (4.14) is, at the same time, also the Hamiltonian

for the ϕ-dual theory (3.3). The origin of the J2 terms in Ĥ can be traced, in particular, to the

presence of the αβ∂ϕ̃∂̄ϕ̃ term in (3.3).
i The presence of this higher order term is consistent with current algebra approaches in the

two special cases when our model becomes equivalent to a WZW or coset model: (i) R = ∞ limit

of the constant magnetic field model (1.1) which is equivalent to the Ec
2 WZW model27,31,32 (for

which the quantum stress tensor contains order 1/k correction equivalent to the term in (4.18)

in this limit); (ii) the non-compact limit of the a = 1 Melvin model (1.2) which is related to

a special limit of the SL(2, R) × R/R gauged WZW model, or to the Ec
2/U(1) coset theory, the

Hamiltonian of which also contains 1/k correction term32.
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it is straightforward to compute the spectrum of states14,16 just as this is done in the free

string theory. Indeed, even though the Hamiltonian (4.14) containing O(J2) terms is, in

general, of fourth order in creation and annihilation operators, it is diagonal in Fock space

since N, Ñ, JL and JR have diagonal form. The continuous momenta p1,2 corresponding to

the zero modes of the coordinates x1,2 of the plane are effectively replaced by the integer

eigenvalues lR, lL = 0, 1, 2, ... of the zero-mode parts b†0b0 and b̃†0b̃0 of ĴR and ĴL (see

(4.16)). Thus the ‘2-plane’ part of the spectrum is discrete in the 0 < γ < 2 sector (but,

as mentioned above, becomes continuous when γ = 0 or γ = 2).j Generic string states

are thus ‘trapped’ by the magnetic flux tube as in the Landau problem or the open string

case. This is consistent with a picture of a charged closed string moving in magnetic field

orthogonal to the plane.

For example, let us consider the scalar state at zero string excitation level SL = SR =

N = Ñ = 0 in the non-winding (w = 0) sector. The eigen-values of ĴR and ĴL in (4.16)

are −lR − 1
2 and lL + 1

2 (lL,R = 0, 1, 2, ... are the analogs of the Landau level). Then in the

a = 1 Melvin model (4.19) Ĥ = 0 reduces to

M2 ≡ E2 − p2
a = −4α′−1

+ p2
y + 2αpy(2lR + 1) − 2α2(lL − lR)(2lR + 1) (5.2)

−2α′α2[py − β(lL − lR)]2 , py = m/R ,

where it is assumed that 0 < γ = 2α′α[py −α(lL − lR)] < 2. The same spectrum (up to the

O(α′) term coming from γ2 in c0 in (4.14)) can be found by directly solving the tachyon

equation (to the leading order in α′)

α′[∆ +O(α′)]T = 4T , ∆ = − 1√
−Ge−2φ

∂µ(
√
−Ge−2φGµν∂ν) .

In the D = 5 background corresponding to the Melvin model (1.2),

[

− ∂2
t + ρ−1∂ρ(ρ∂ρ)+ ρ−2(1 +α2ρ2)2∂2

ϕ + (1+α2ρ2)∂y(∂y − 2α∂ϕ)
]

T = −4α′−1
T , (5.3)

and (5.2) is reproduced by taking T = exp(iEt + ipyy + ilϕ) T̃ (ρ), l = lL − lR. Similar

correspondence between the string spectrum and the solution of the tachyon equation is

found also in the constant magnetic field model (1.1) where the point-particle limit of the

Hamiltonian (4.18) is

Ĥ0 = 1
2
α′[ − E2 + p2

a + p2
y + 2(py + E)β(lR + 1

2
) − 1

2
α′β2(py + E)2

]

− 2 . (5.4)

j The Hamiltonian for the case of γ = 0 is obtained by adding 1

2
α′(p2

1 + p2
2) and replacing

−b†0b0−
1

2
and b̃†0b̃0 + 1

2
in ĴR and ĴL in (4.16) by one half of the center of mass orbital momentum

(x1p2 − x2p1).
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In semiclassical approximation (5.4) is similar to the Landau Hamiltonian with py + E

playing the role of charge. The unusual dependence on the energy is due to the fact that

the background (2.8) is stationary but not static (or, equivalently, due to the presence

of the antisymmetric tensor background as demanded by conformal invariance). For the

subclass of models with α = β the metric is static (and Bµν = 0, see (2.5),(2.7)) and we

get more direct correspondence with familiar particle theory expressions. Indeed, in the

weak-field limit when α = β and q are small one finds from (4.14) (cf. (5.2))

M2 = M2
0 − 2(q+Q+SR + q−Q−SL) + [(2lR + 1)q+Q+ − (2lL + 1)q−Q−] +O(q2±) ,

α′M2
0 = −4 + 2N + 2Ñ + 1

2Q
2
+ + 1

2Q
2
− , q± = q ± α .

Since in the closed string models we consider there are two U(1) gauge fields (2.6) with

strengths determined by q± we get two gyromagnetic ratios (in general, different from

2), gR = 2SR/S, gL = 2SL/S, S = SR + SL, which are in agreement16 with earlier

suggestions ref.13.

5.1. Tachyonic instabilities

The effect that the magnetic field produces on the energy of a generic state can be

interpreted as a combination of the gyromagnetic Landau-type interaction and the influence

of curved space-time geometry. The important property of the spectrum is the appearance

of new tachyonic instabilities, typically associated with states with angular momentum

aligned along the magnetic field. Similar magnetic instabilities were found in non-abelian

field theories5,6 (where one has charged spin 1 particles with non-minimal coupling) and

in the (abelian) open string theory8. In the open string case there is a sequence of critical

values of the magnetic field for which highest spin component states (lying on the first

Regge trajectory, (b†1+)k|0; lR = 0 >, cf. (4.16),(4.17)) become tachyonic10. The new

feature of the closed string theory is the existence of states with arbitrarily large charges.

Since the critical magnetic field at which a given state of a charge Q may become tachyonic

is of order of 1/(α′Q) there is an infinite number of tachyonic instabilities for any given

finite value of the magnetic field. Also, in contrast to the abelian open (super)string

model8,10 where charged S ≥ 1 spin states are massive and thus instability can appear

only for large (∼ 1/α′) values of the magnetic field, the free closed string spectrum contains

charged massless states so that (as in the unbroken gauge theory5) tachyonic states appear

for an infinitesimal value of the background magnetic field.

To illustrate the presence of the new tachyonic instabilities let us consider the constant

magnetic field model (4.18) and look at the states which complete the SU(2)R massless

vector multiplet in the free (β = 0) theory compactified on a circle of ‘self-dual’ radius
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R =
√
α′. The states with SR 6= 0 are b

†
1±|0;m = w = 1〉, b

†
1±|0;m = w = −1〉, i.e. have

Ñ = 0, JR = −lR ± 1, and the energy

κ
[

E + κ−1β(ĴR + 1
2α

′βQ+)
]2

= −4α′−1
+ κ−1(Q+ − βĴR)2 , (5.5)

κ ≡ 1 + 1
2
α′β2 , Q+ = (r + r−1)/

√
α′ , r ≡ R/

√
α′ .

If r = 1, an infinitesimal magnetic field β > 0 makes the component with JR = 1 tachyonic.

This instability is the same as in the non-abelian gauge theory5. Away from the self-dual

radius, this state is mahas real energy for small β and becomes tachyonic for some finite

critical value βcr of the magnetic field.

Instabilities caused by the linear in ĴL,R terms in Ĥ are present also in the α = β

models, in particular, in the a = 1 Melvin model (4.19). For example, the mass of the

level one state with w = 0, m > 0, N = Ñ = 1, lR = lL = 0, SR = 1, SL = −1

(which corresponds to a ‘massless’ scalar with a Kaluza-Klein charge) is (cf. (5.2)) M2 =

py(py − 2α− 2α′α2py). For large enough R, M2 becomes negative when α > αcr ∼ 1
2py.

For these states γ = 2α′αpy and thus γ < 2 if α > αcr and α′p2
y < 2. The critical value

of the magnetic field goes to zero as R → ∞.k The a =
√

3 Melvin model is stable in the

non-winding (w = 0, i.e. γ = 0) sector, in the sense that it has no new instabilities in

addition to the usual flat space tachyon. For w 6= 0 (and 0 < γ < 2) there exists a range

of parameters q, R for which there is again the same linear instability as in the a = 1

Melvin model16.

5.2. String partition function on the torus

Given the explicit expressions for the Virasoro operators in (4.14),(4.15) it is straight-

forward to compute the partition function of this conformal model,

Z =

∫

d2τ

τ2

∫

dE
24
∏

a=3

dpa

∞
∑

m,w=−∞
Tr exp

[

2πi(τL̂0 − τ̄ ˆ̃L0)
]

. (5.6)

After the integration over the energy, momenta, Poisson resummation and introduction of

two auxiliary variables λ, λ̄ (in order to ‘split’ the O(J2) terms in L̂0,
ˆ̃L0 to be able to

compute the trace over the oscillators) one finds16

Z(r, α, β, q) =

∫

[d2τ ]1 W (r, α, β, q|τ, τ̄) , (5.7)

k In the noncompact case py becomes a continuous parameter representing the momentum of

the ‘massless’ state in the y-direction. Thus the ‘massless’ state with an infinitesimal momentum

py becomes tachyonic for an infinitesimal value of α.
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[d2τ ]1 ≡ d2τ τ−14
2 e4πτ2|f0(e2πiτ)|−48 ,

where W is given by the sum over windings and the two auxiliary ordinary integrals

W =
r

α′αβτ2

∞
∑

w,w′=−∞

∫

dλdλ̄ e−I(χ,χ̃,w,w′,τ,τ̄) χχ̃|θ′1(0|τ)|2
θ1(χ|τ)θ1(χ̃|τ̄)

, (5.8)

I =
π

α′αβτ2

[

χχ̃+
√
α′r(q + β)(w′ − τw)χ̃+

√
α′r(q − α)(w′ − τ̄w)χ

+ α′r2q(q + β − α)(w′ − τw)(w′ − τ̄w) + 1
2
α′αβ(χ− χ̃)2

]

,

χ ≡ −
√
α′[2βλ+ qr(w′ − τw)] , χ̃ ≡ −

√
α′[2αλ̄+ qr(w′ − τ̄w)] .

Z in (5.7),(5.8) can be also obtained by directly computing the string path integral with

the action (3.5). The special ‘null’ structure of (3.5) makes possible to compute this non-

gaussian path integral exactly (up to the two remaining ordinary integrals over λ, λ̄).

Like the measure in (5.7) W is SL(2, Z) modular invariant (to show this one needs to

shift w,w′ and redefine χ, χ̃). Z(r, α, β, q) has several symmetry properties: Z(r, α, β, q) =

Z(r,−β,−α, q) = Z(r,−α,−β,−q) = Z(r, β, α,−q). It is also invariant under the duality

in y direction which transforms the theory with y-period 2πR and parameters (α, β, q)

into the theory with y-period 2πα′/R and parameters (q, β − α + q, α) or parameters

(α− β − q,−q,−β), i.e.

Z(r, α, β, q) = Z(r−1, q, β − α+ q, α) = Z(r−1, α− β − q,−q,−β).

For α = q or β = −q these relations take their standard ‘circle’ form: Z(r, α, β, α) =

Z(r−1, α, β, α), Z(r, α, β,−β) = Z(r−1, α, β,−β). When α = β = q = 0 the partition

function (5.7) is that of the free string compactified on a circle of radius R =
√
α′r.

Taking the limit of the non-compact y-dimension (R → ∞) for generic (α, β, q) one finds

that Z (5.7),(5.8) reduces to the partition function of the free bosonic closed string theory.l

The expression for Z simplifies when at least one of the parameters α, β, q or q+β−α
vanishes so that the integrals over λ, λ̄ can be computed explicitly. For example, in the

case when either α or β is equal to zero (which includes the constant magnetic field model

and a =
√

3 Melvin model) one finds

W = r

∞
∑

w,w′=−∞
exp

(

− π

τ2
[r2(w′ − τw)(w′ − τ̄w) + 1

2 (χ0 − χ̃0)
2]

) χ0χ̃0|θ′1(0|τ)|2
θ1(χ0|τ)θ1(χ̃0|τ̄)

,

l This generalizes a similar observation for the α = q = 0 model14. In the limit R = ∞

the α = q = 0 model (1.1) is equivalent to the model of ref.27 which has trivial (free) partition

function31.
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χ0 =
√
α′(q + β)r(w′ − τw) , χ̃0 =

√
α′(q − α)r(w′ − τ̄w) , αβ = 0 .

The magnetic instability of these models (the presence of tachyons in the spectrum) is

reflected in singularities (or imaginary parts) of Z. The partition function has new di-

vergences at critical values of the magnetic field parameters when the energy develops an

imaginary part.

6. Concluding remarks

The actions (1.1)–(1.3),(3.5) admit straightforward (1, 1) and (0, 1) (or (1, 0)) super-

symmetric generalizations describing closed superstring and heterotic string models where

the two abelian magnetic fields appear in the Kaluza-Klein sector. In addition, it is pos-

sible to construct the heterotic string versions of (1.1) and (1.2) which correspond to the

same background fields (2.8) and (2.9) but now the magnetic fieldm is embedded in the

gauge sector of the heterotic string.14,15 The idea is to ‘fermionize’ the internal bosonic

coordinate y. The non-trivial part of the action of the resulting heterotic string analog of

(1.1),(2.8) is14

I(0,1) =
1

πα′

∫

d2σ
[

− ∂t∂̄t− 2Ai∂t∂̄x
i + (δij − AiAj)∂x

i∂̄xj

− λt̂
L∂λ

t̂
L + λLi∂λ

i
L + Fij∂tλ

i
Lλ

j
L + 1

2FijAk∂x
kλi

Lλ
j
L

+ ψ̄R(∂̄ − ie0Ai∂̄x
i)ψR + 1

2
ie0Fijψ̄RψRλ

i
Lλ

j
L

]

, e0 ≡ R−1 =
√

2/α′ ,

where Ai = −1
2βǫijx

j . Like the bosonic model (1.1) and its direct supersymmetrisations

this model can be solved explicitly41. Detailed study of the pattern of the spectrum in

this and similar models (in particular, the special cases when certain higher spin states

become massless before becoming tachyonic) may teach us about possible hidden string

symmetries. Another interesting direction seems to consider these models in the context

of electro-magnetic duality.

Let us mention also that there was a suggestion19,21,42 to interpret the Melvin-type

solutions of the higher dimensional (dilaton) Einstein-Maxwell theory as alternatives to

the standard Kaluza-Klein compactification on compact spaces. The idea was to consider

the (ρ, ϕ) part of the Melvin space (cf.(2.9),(2.10)) as an internal one. Though this 2-space

is non-compact, it is ‘nearly closed’ and the corresponding scalar Laplacian has discrete

branch in the spectrum (cf.(5.3),(5.2)). The conformal Melvin models (1.2),(1.3) may be

used in an attempt of string-theoric implementation of this idea of having a non-compact

space as an internal one (in string models (1.2),(1.3) the internal space is 3-dimensional

m Note that the two vector fields A and B in (2.8),(2.9) are the same up to sign.
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(ρ, ϕ, y)). Since the spectrum of the string mass operator for the Melvin model is explicitly

computable, this makes possible to determine the corresponding masses of particles moving

in extra flat spatial dimentions. Unfortunately, as in the case of the particle theory limit42,

this idea does not actually work in the Melvin model: though most of the states in the

spectrum belong to its discrete branch, there are also special “zero mode” states (e.g.,

scalar state with zero charge and orbital momentum in (5.2)) which have continuous mass

parameter. It may happen, however, that there are related string models which (like

modifications of the Melvin solution discussed in ref.42) may not have this deficiency and

yet be explicitly solvable. Such models could be also of interest in the context of possible

supersymmetry breaking by magnetic backgrounds in internal dimensions (see ref.43 and

refs. there).
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