Shell Effects in Atomic Nuclei

Laurent Gaudefroy ${ }^{1} \quad$ Alexandre Obertelli ${ }^{2}$
${ }^{1}$ CEA, DAM, DIF - France
${ }^{2}$ CEA, Irfu - France
Shell Effects in Finite Quantum Systems Erice-Sicily July 25-31, 2010

energie atomique • energies alternatives

The atomic nucleus

General properties

- Z Protons: $J^{\pi}=1 / 2^{+}$; N Neutrons: $J^{\pi}=1 / 2^{+}$; $A=N+Z$ fermions.
- Strong interaction range: $\simeq 2 \mathrm{fm}$
- Nuclear radius: $R \simeq r_{0} A^{1 / 3} \mathrm{fm}$, $r_{0} \simeq 1.2 \mathrm{fm}$.
- Nucleon mean free path: $>R$.

Nuclei description

- Strong short-range repulsion;
- A (N+Z) interacting fermions;
- Ab initio approach

Nuclear mean field

- Created by the (A-1) nucleons;
- Replaces NN-interaction.
- Shell Model or Mean Field approaches.

Magic numbers: 2, 8, 20, 28, 50, 82, 126

Goeppert Mayer \& Jensen

From M. Goeppert Mayer Nobel Lecture (1963)

"What makes a number magic is that a configuration of a magic number of neutrons, or of protons, is unusually stable whatever the associated number of the other nucleons.[. . .]
We found that there were a few nuclei which had greater isotopic as well as cosmic abundance than our theory or any other reasonable theory could explain. Then I found those nuclei had something in common: they either had 82 neutrons, [...] or 50 neutrons."

Spin-Orbit interaction

Harmonic oscillator potential

$$
U(r)=\frac{1}{2} M \omega^{2} r^{2}
$$

- Magic numbers: 2, 8, 20, 40, 70

Angular momentum and

spin-orbit

$U^{\prime}(r)=U(r)+\ell^{2}+\ell s$

- Magic numbers: 2, 8, 20, 28, 50, 82

Success and failure of the nuclear shell model

Good features

(1) Accounts for known magic numbers.
(2) Reproduces $J^{\pi}, E^{*}, Q, \mu \ldots$

Bad features

(1) Built from knowledge on stable nuclei.
(2) (Dis)appearance of magic numbers in unstable nuclei.

Outline

Today

(1) Few body systems.

- Haloes.
- Clusters.
(2) Heavier systems.
- Shell evolution: general view.
- Studies at $N=28$.

Tomorrow

(1) Shapes and coexistence.
(2) Super heavy elements.

Few-body systems

Why?

(1) Nuclear interaction $\propto A^{-1 / 3}$
(2) Strong shell effects expected
(3) Exotic phenomena

Haloes

Clusters

Density distributions in He isotopes

Annu. Rev. Nucl. Part. Sci.51, 53(2001).

- Add 2 neutrons to ${ }^{4} \mathrm{He}$ $\Rightarrow \rho(r>2) ~ /$ factor of 10 .
- ${ }^{6} \mathrm{He} \simeq{ }^{8} \mathrm{He}$

Density distributions in He isotopes

S.C. Pieper \& R.B. Wiringa

Annu. Rev. Nucl. Part. Sci.51, 53(2001).

- Add 2 neutrons to ${ }^{4} \mathrm{He}$ $\Rightarrow \rho(r>2) ~ \nearrow$ factor of 10 .
- ${ }^{6} \mathrm{He} \simeq{ }^{8} \mathrm{He}$

- From ${ }^{40} \mathrm{Ca}$ to ${ }^{42} \mathrm{Ca}$ \Rightarrow No significant change.

Density distributions in He isotopes

S.C. Pieper \& R.B. Wiringa

Annu. Rev. Nucl. Part. Sci.51, 53(2001).

- Add 2 neutrons to ${ }^{4} \mathrm{He}$ $\Rightarrow \rho(r>2) ~ \nearrow$ factor of 10 .
- ${ }^{6} \mathrm{He} \simeq{ }^{8} \mathrm{He}$

- From ${ }^{40} \mathrm{Ca}$ to ${ }^{42} \mathrm{Ca}$ \Rightarrow No significant change.
- idem for ${ }^{44} \mathrm{Ca}$..

Density distributions in He isotopes

S.C. Pieper \& R.B. Wiringa

Annu. Rev. Nucl. Part. Sci.51, 53(2001).

- Add 2 neutrons to ${ }^{4} \mathrm{He}$ $\Rightarrow \rho(r>2) ~ \nearrow$ factor of 10 .
- ${ }^{6} \mathrm{He} \simeq{ }^{8} \mathrm{He}$

- From ${ }^{40} \mathrm{Ca}$ to ${ }^{42} \mathrm{Ca}$ \Rightarrow No significant change.
- idem for ${ }^{44} \mathrm{Ca}$..

Halo nuclei

An exotic phenomenon

- Weakly bound nuclei.
- Extension of neutron wave function out of the interaction range!
- Linked to shell structure (s or p waves).

Halo nuclei: Experimental evidence

- R from reaction cross section:

$$
\sigma=\pi\left(R_{\text {Target }}+R_{\text {Proj }}\right)^{2} .
$$

I. Tanihata, J. Phys. G: Nucl. Part. Phys.22, 157 (1996).

Halo nuclei: Experimental evidence

I. Tanihata, J. Phys. G: Nucl. Part. Phys. 22, 157 (1996).

Halo nuclei: Shell effect

Halo nuclei: Shell effect

Drip-line

- Loosely bound systems
- $\Psi(r) \propto \frac{e^{-S_{n} r}}{r}$.
- Low ℓ
- Centrifugal force.

Halo nuclei: Shell effect

Drip-line

- Loosely bound systems
- $\Psi(r) \propto \frac{e^{-S_{n} r}}{r}$.
- Low ℓ
- Centrifugal force.

Halo nuclei: Shell effect

Structural effect

- From $N=9$ to $N=14: \nu d_{5 / 2}$ filling.
- Strong shell effect \Rightarrow Shell rearrangement.

Halo nuclei: Shell effect

Structural effect

- From ${ }^{15} \mathrm{C}_{9}$ to ${ }^{22} \mathrm{C}_{16} \Rightarrow \nu s_{1 / 2}$ orbit as GS .
- Not yet quantitatively understood.

Halo nuclei

Summary

(1) Extension of nucleon wave function out of interaction range.
(2) Appear in light loosely bound nuclei.
(3) Shell effects \Rightarrow orbital reordering.

Density distribution in ${ }^{8} \mathrm{Be}$.

- Unbound GS: $T_{1 / 2} \simeq 10^{-16}$ s $\Rightarrow{ }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$.
- 0^{+}: two structures
$\Rightarrow{ }^{4} \mathrm{He}$ cluster.
- $\alpha: N=Z=2$.
- Clusters might appear in light $N=Z$ nuclei.

Clusters in nuclei

Mass number

Energy threshold for clustering

- Must be energetically allowed.
- ${ }^{8} \mathrm{Be} \rightarrow 2 \alpha$
- ${ }^{4 n} X \rightarrow n \alpha$
- Cluster phase expected around $E^{*}=$ decay threshold.

Clusters \& Shell effects

Adapted from:
M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

Clusters \& Shell effects

Adapted from:
M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

Clusters \& Shell effects

Adapted from:
M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

Clusters \& Shell effects

Adapted from:
M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

Clusters in nuclei.

Summary

- α clusters appear in $N=Z$ light nuclei.
- Close to decay threshold.
- Strong deformation leading to shell rearrangement.
- Experimental evidence: Eg. look for deformed structure.

Digression: ${ }^{12} \mathrm{C}$, life and clusters.

Synthesis of ${ }^{12} \mathrm{C}$

- Insufficient production for ${ }^{12} \mathrm{C}$;
- F. Hoyle (1954) predicted a
$\simeq 7.27 \mathrm{MeV}$ state

Digression: ${ }^{12} \mathrm{C}$, life and clusters.

Synthesis of ${ }^{12} \mathrm{C}$

- Insufficient production for ${ }^{12} \mathrm{C}$;
- F. Hoyle (1954) predicted a $\simeq 7.27 \mathrm{MeV}$ state
- Triple α process: Fowler (Nobel Prize 1983).

Few Body Systems

Summary

(1) Benchmarks for models.
(2) Strong shell effects.
(3) exotic phenomena:
(9) haloes, clusters, molecules, ...

Outline

Today

(1) Few body systems.
(2) Heavier systems.

- Shell evolution: quick tour.
- Studies at $N=28$.

Shell evolution: overview

50, 82

Predicted to disappear in exotic (enough) nuclei.

$14,16,32,40$

Observed magic properties in neutron-rich nuclei.

70

Predicted as magic number in exotic nuclei.

The $N=28$ magic number

$1^{\text {st }}$ Spin-Orbit magic number

The $N=28$ magic number

$1^{\text {st }}$ Spin-Orbit magic number

The $N=28$ magic number

$1^{\text {st }}$ Spin-Orbit magic number

The $N=28$ magic number

$$
\mathbf{1}^{\text {st }} \text { Spin-Orbit magic number }
$$

The $N=28$ magic number

$1^{\text {st }}$ Spin-Orbit magic number

Study of exotic nuclei

A way to access part of NN interaction not at play in stable nuclei.

2^{+}excitation energy

Onset of correlations Indirect evidence

(1) $N=20,28:$ magic at $Z=20$.

2^{+}excitation energy

Onset of correlations -

Indirect evidence

(1) $N=20$, 28: magic at $Z=20$.
(2) Deacrease at $Z=16 \ldots$
(3) \ldots and at $Z=14$ as well.
$N=20$ remains rigid up to $Z=14$, while $N=28$ vanishes.

Basic interpretation

2^{+}configurations

28

- Neutron excitations across $N=28$.
- $\left(\nu f_{7 / 2} \otimes \nu p_{3 / 2}\right)^{J \pi}=2^{+}$.

Basic interpretation

2^{+}configurations

$\mathrm{f}_{7 / 2}-0000000-000000-$
$\mathbf{J}=\mathbf{2}$
28

- Neutron excitations across $N=28$.
- $\left(\nu f_{7 / 2} \otimes \nu p_{3 / 2}\right)^{J \pi}=2^{+}$.
- Shell gap reduced $\Rightarrow \mathrm{E}\left(2^{+}\right)$reduced.
- Neglects correlations.

Transfer reaction

Interest

- Direct way to probe shell structure
- Possible for relatively high intensity beam ($>10^{4} \mathrm{pps}$)
- Performed on the radioactive ${ }_{18}^{46} \mathrm{Ar}_{28}$ nucleus.

Transfer reaction: ${ }^{46} \mathrm{Ar}(d, p)^{47} \mathrm{Ar}$

Experimental Setup: SPEG at GANIL

Transfer reaction: ${ }^{46} \mathrm{Ar}(d, p)^{47} \mathrm{Ar}$

Experimental Setup: SPEG at GANIL

Transfer reaction: ${ }^{46} \mathrm{Ar}(d, p)^{47} \mathrm{Ar}$

Experimental Setup: SPEG at GANIL

Transfer reaction: ${ }^{46} \mathrm{Ar}(d, p)^{47} \mathrm{Ar}$

Experimental Setup: SPEG at GANIL

${ }^{46} \operatorname{Ar}(d, p){ }^{47}$ Ar: Results

Level scheme

State configurations

${ }^{46} \mathrm{Ar}(d, p){ }^{47} \mathrm{Ar}$: Results

Level scheme

State configurations

${ }^{46} \operatorname{Ar}(d, p)^{47} \mathrm{Ar}$: Results

Level scheme

State configurations

3/2	1/2	7/2
$\mathrm{p}_{1 / 2} \longrightarrow \longrightarrow$		
$\mathrm{p}_{3 / 2} \longrightarrow$		-0.
28	28	28
$\mathrm{f}_{7 / 2}-0000000$	000000	-00000000-

Conclusions

(1) Still single particle states in ${ }^{47} \mathrm{Ar}$.
(2) $7 / 2^{-}$intruder state.
(3) Slight erosion of $N=28$ (by 300 keV).

Shell evolution from ${ }_{20} \mathrm{Ca}$ to ${ }_{14} \mathrm{Si}$

Shell evolution from ${ }_{20} \mathrm{Ca}$ to ${ }_{14} \mathrm{Si}$

Shell evolution from ${ }_{20} \mathrm{Ca}$ to ${ }_{14} \mathrm{Si}$

(2) Attractive $\pi d_{3 / 2}-\nu f_{7 / 2}$ interaction.

Shell evolution from ${ }_{20} \mathrm{Ca}$ to ${ }_{14} \mathrm{Si}$

(2) Attractive $\pi d_{3 / 2}-\nu f_{7 / 2}$ interaction.
(3) Not strong enough effect.

Shell evolution: what else?

Correlations

$$
\mathscr{H}=\mathscr{H}_{\text {Mono }}+\mathscr{H}_{\text {Multi }}
$$

$\mathscr{H}_{\text {Mono }}$ main component:

$$
V_{M o n o}=\frac{\sum_{J}(2 J+1) V_{i j}^{J}}{\sum_{J}(2 J+1)}
$$

$\mathscr{H}_{\text {Multi }}$: correlations (pairing, quadrupole, ...).

Onset of correlation at $N=28$

- ${ }^{48} \mathrm{Ca}$: Less than gap size

Onset of correlation at $N=28$

- ${ }^{48} \mathrm{Ca}$: Less than gap size
- ${ }^{46}$ Ar: Promote 2 neutrons
L. Gaudefroy et al., Phys. Rev. Lett.97, 092501(2006).

Onset of correlation at $N=28$

- ${ }^{48} \mathrm{Ca}$: Less than gap size
- ${ }^{46}$ Ar: Promote 2 neutrons
L. Gaudefroy et al., Phys. Rev. Lett.97, 092501(2006).

- ${ }^{44}$ S: Spher./Def. shape coex.
S. Grévy et al., Submit. to Phys. Rev. Lett.
- ${ }^{42} \mathrm{Si}$: Deformed nucleus.
B. Bastin et al., Phys. Rev. Lett.99, 022503(2007).

Shell evolution at $N=28$: Summary

Shell evolution at $N=28$: Summary

Concluding remarks

(1) Atomic nuclei: A interacting fermions.
(2) Shell structure and magic numbers.

Concluding remarks

(1) Atomic nuclei: A interacting fermions.
(2) Shell structure and magic numbers.
(3) Shell effects: orbital reordering.
(1) Few-body systems: exotic phenomena (Haloes, Clusters).

Concluding remarks

(1) Atomic nuclei: A interacting fermions.
(2) Shell structure and magic numbers.
(3) Shell effects: orbital reordering.
(1) Few-body systems: exotic phenomena (Haloes, Clusters).
(0) Original models from stable nuclei.
(6) Exotic nuclei: a probe for $N N$-interaction.
(T) Larger systems: from magic to strongly correlated.

Concluding remarks

(1) Atomic nuclei: A interacting fermions.
(2) Shell structure and magic numbers.
(3) Shell effects: orbital reordering.
(1) Few-body systems: exotic phenomena (Haloes, Clusters).
(5) Original models from stable nuclei.
(6) Exotic nuclei: a probe for $N N$-interaction.
(1) Larger systems: from magic to strongly correlated.
(8) Correlations \Longleftrightarrow deformation - Alexandre's lecture.

