Shell Effects in Atomic Nuclei

Laurent Gaudefroy1 Alexandre Obertelli2

1CEA, DAM, DIF - France
2CEA, Irfu - France

Shell Effects in Finite Quantum Systems
Erice-Sicily July 25-31, 2010
The atomic nucleus

General properties

- **Z** Protons: $J^\pi = 1/2^+$;
 - **N** Neutrons: $J^\pi = 1/2^+$;
 - $A = N + Z$ fermions.
- Strong interaction range: $\simeq 2$ fm
- Nuclear radius: $R \simeq r_0 A^{1/3}$ fm,
 - $r_0 \simeq 1.2$ fm.
- Nucleon mean free path: $> R$.

![Diagram](https://via.placeholder.com/150)
From nucleon-nucleon to nuclear interaction

Nuclei description
- Strong short-range repulsion;
- A $(N+Z)$ interacting fermions;
- Ab initio approach

Nuclear mean field
- Created by the $(A-1)$ nucleons;
- Replaces NN-interaction.
- Shell Model or Mean Field approaches.
Magic numbers: 2, 8, 20, 28, 50, 82, 126

"What makes a number magic is that a configuration of a magic number of neutrons, or of protons, is unusually stable whatever the associated number of the other nucleons.[...]

We found that there were a few nuclei which had greater isotopic as well as cosmic abundance than our theory or any other reasonable theory could explain. Then I found those nuclei had something in common: they either had 82 neutrons, [...] or 50 neutrons."
Spin-Orbit interaction

Harmonic oscillator potential

\[U(r) = \frac{1}{2} M \omega^2 r^2 \]

- Magic numbers: 2, 8, 20, 40, 70

Angular momentum and spin-orbit

\[U'(r) = U(r) + \ell^2 + \ell s \]

- Magic numbers: 2, 8, 20, 28, 50, 82
Success and failure of the nuclear shell model

Good features

1. Accounts for known **magic numbers**.
2. Reproduces J^π, E^*, Q, μ…

Bad features

1. Built from knowledge on stable nuclei.
2. (Dis)appearance of magic numbers in unstable nuclei.
Outline

Today

1. Few body systems.
 - Haloes.
 - Clusters.

2. Heavier systems.
 - Shell evolution: general view.
 - Studies at $N = 28$.

Tomorrow

1. Shapes and coexistence.

2. Super heavy elements.
Few-body systems

Why?

1. Nuclear interaction $\propto A^{-1/3}$
2. Strong shell effects expected
3. Exotic phenomena

Haloes

Clusters
Density distributions in He isotopes

Add 2 neutrons to ^4He

$\Rightarrow \rho(r > 2) \uparrow$ factor of 10.

$^6\text{He} \simeq ^8\text{He}$
Density distributions in He isotopes

- Add 2 neutrons to 4He
 $\Rightarrow \rho(r > 2) \uparrow$ factor of 10.

- 6He \simeq 8He

- From 40Ca to 42Ca
 \Rightarrow No significant change.
Density distributions in He isotopes

- Add 2 neutrons to ^4He
 $\Rightarrow \rho(r > 2) \uparrow$ factor of 10.
- $^6\text{He} \simeq ^8\text{He}$

From ^{40}Ca to ^{42}Ca
\Rightarrow No significant change.
- idem for ^{44}Ca...
Density distributions in He isotopes

- Add 2 neutrons to 4He
 - $\Rightarrow \rho(r > 2) \uparrow$ factor of 10.
- 6He \simeq 8He

- From 40Ca to 42Ca
 - \Rightarrow No significant change.
- idem for 44Ca...
- 20 neutrons latter $\rho(r > 2) \uparrow$.

S.C. Pieper & R.B. Wiringa

L. Godefroy, A. Obertelli
Halo nuclei

An exotic phenomenon

- Weakly bound nuclei.
- Extension of neutron wave function out of the interaction range!
- Linked to shell structure (s or p waves).
Halo nuclei: Experimental evidence

\[R \text{ from reaction cross section:} \]
\[\sigma = \pi (R_{\text{Target}} + R_{\text{Proj}})^2. \]

L. Gaudefroy, A. Obertelli
Halo nuclei: Experimental evidence

- R from reaction cross section:
 \[\sigma = \pi (R_{\text{Target}} + R_{\text{Proj}})^2. \]
- Does not follow $A^{1/3}$ law for: $(^6,^8\text{He}), ^{11}\text{Li}, ^{11,14}\text{Be}$ and ^{17}B.
- (Near) Drip line nuclei.

L. Gaudefroy, A. Obertelli
Halo nuclei: Shell effect

\[\Psi(r) \propto e^{-Sn_{sn}}. \]

Loosely bound systems

Centrifugal force.

L. Gaudefroy, A. Obertelli
Halo nuclei: Shell effect

Drip-line

- Loosely bound systems
- $\Psi(r) \propto e^{-Snr/r}$
- Low ℓ
- Centrifugal force.
Halo nuclei: Shell effect

Drip-line

- Loosely bound systems
 - $\Psi(r) \propto e^{-\frac{S_{nr}}{r}}$
- Low ℓ
- Centrifugal force.
Halo nuclei: Shell effect

From $N = 9$ to $N = 14$: $\nu d_{5/2}$ filling.

Strong shell effect \Rightarrow Shell rearrangement.
Halo nuclei: Shell effect

Structural effect

- From $^{15}\text{C}_9$ to $^{22}\text{C}_{16}$ $\Rightarrow \nu s_{1/2}$ orbit as GS.
- Not yet quantitatively understood.
Halo nuclei

Summary

1. Extension of nucleon wave function out of interaction range.
2. Appear in light loosely bound nuclei.
3. Shell effects \Rightarrow orbital reordering.
Density distribution in ^8Be.

- **Unbound GS**: $T_{1/2} \simeq 10^{-16}\text{s}$
 \[\Rightarrow ^8\text{Be} \rightarrow ^4\text{He} + ^4\text{He}. \]
- **0$^+$**: two structures
 \[\Rightarrow ^4\text{He} \text{ cluster}. \]
- **α**: $N = Z = 2$.
- **Clusters** might appear in light $N = Z$ nuclei.

Clusters in nuclei

Energy threshold for clustering

- Must be energetically allowed.
- $^8\text{Be} \rightarrow 2\alpha$
- $^{4n}\text{X} \rightarrow n\alpha$
- Cluster phase expected around $E^* = \text{decay threshold}$.

L. Gaudefroy, A. Obertelli
Clusters & Shell effects

Adapted from:

L. Gaudefroy, A. Obertelli
Clusters & Shell effects

Adapted from:

L. Gaudefroy, A. Obertelli
Clusters & Shell effects

Adapted from:

L. Gaudefroy, A. Obertelli
Clusters & Shell effects

Adapted from:

L. Gaudefroy, A. Obertelli
Clusters in nuclei.

Summary

- α clusters appear in $N=Z$ light nuclei.
- Close to decay threshold.
- Strong deformation leading to shell rearrangement.
- Experimental evidence: Eg. look for deformed structure.
Digression: ^{12}C, life and clusters.

Synthesis of ^{12}C

- Insufficient production for ^{12}C;
- F. Hoyle (1954) predicted a ≈ 7.27 MeV state
Digression: 12C, life and clusters.

Synthesis of 12C

- Insufficient production for 12C;
- F. Hoyle (1954) predicted a $\simeq 7.27$ MeV state;
- Triple α process: Fowler (Nobel Prize 1983).
Few Body Systems

Summary

1. Benchmarks for models.
2. Strong shell effects.
3. Exotic phenomena: haloes, clusters, molecules, ...
Outline

Today

1. Few body systems.
2. Heavier systems.
 - Shell evolution: quick tour.
 - Studies at $N = 28$.
Shell evolution: overview

\[N = 8 \]

- \(^{16}\text{O}_8\): \(E(2^+) \approx 7 \text{ MeV} \)
- \(^{12}\text{Be}_8\): \(E(2^+) \approx 2 \text{ MeV} \)
- \(2s_{1/2}\) intruding and breaking the gap.
Shell evolution: overview

\[N = 20 \]

- \(^{40}\text{Ca}_{20}\): \(E(2^+) \approx 7\) MeV
- \(^{32}\text{Mg}_{20}\): \(E(2^+) \approx 0.9\) MeV
- Island of deformation near \(^{32}\text{Mg}_{20}\).
Shell evolution: overview

- $N = 28$
 - $^{48}\text{Ca}_{28}$: $E(2^+) \simeq 4$ MeV
 - $^{42}\text{Si}_{28}$: $E(2^+) \simeq 0.8$ MeV
 - Island of deformation near $^{42}\text{Si}_{28}$.
Shell evolution: overview

- $^{48}_{20}\text{Ca}_{28}$: $E(2^+) \simeq 4$ MeV
- $^{42}_{14}\text{Si}_{28}$: $E(2^+) \simeq 0.8$ MeV
- Island of deformation near $^{42}_{14}\text{Si}_{28}$.
Shell evolution: overview

50, 82
Predicted to disappear in exotic (enough) nuclei.

14, 16, 32, 40
Observed magic properties in neutron-rich nuclei.

70
Predicted as magic number in exotic nuclei.
The $N = 28$ magic number

1st Spin-Orbit magic number

p_f \quad $f_{5/2}$ \quad $f_{7/2}$

Heavier systems

Summary

Few-body systems

The $N = 28$ magic number

1st Spin-Orbit magic number

p_f \quad $f_{5/2}$ \quad $f_{7/2}$

Heavier systems

Summary

Few-body systems

Study of exotic nuclei

Away to access part of NN interaction not at play in stable nuclei.

L. Gaudefroy, A. Obertelli

Shell Effects in Atomic Nuclei
The $N = 28$ magic number

First Spin-Orbit magic number:

- f states:
 - $f_{7/2}$
 - $f_{5/2}$

- p states:
 - $p_{1/2}$
 - $p_{3/2}$

Proton numbers and nuclei:

- ^{48}Ca
- ^{47}K
- ^{46}Ar
- ^{45}Cl
- ^{44}S
- ^{43}P
- ^{42}Si

Valence space and ^{28}O core

Study of exotic nuclei: Away to access part of NN interaction not at play in stable nuclei.
The $N = 28$ magic number

1st Spin-Orbit magic number

- f states
 - $f_{5/2}$
 - $f_{7/2}$
 - 28
- p states
 - $p_{1/2}$
 - $p_{3/2}$

Proton number

- 20
- 19
- 18
- 17
- 16
- 15
- 14

Valence space

- $^{28}\text{O core}$
- ^{42}Si
- ^{43}P
- ^{44}S
- ^{45}Cl
- ^{46}Ar
- ^{47}K
- ^{48}Ca

Shell Effects in Atomic Nuclei

L. Gaudefroy, A. Obertelli
The $N = 28$ magic number

1st Spin-Orbit magic number

<table>
<thead>
<tr>
<th>Proton number</th>
<th>^{48}Ca</th>
<th>^{47}K</th>
<th>^{46}Ar</th>
<th>^{45}Cl</th>
<th>^{44}S</th>
<th>^{43}P</th>
<th>^{42}Si</th>
<th>^{28}O core</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$^\text{28}\text{O core}$</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>^{44}S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>^{43}P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>^{42}Si</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valence space

L. Gaufroy, A. Obertelli

Shell Effects in Atomic Nuclei 27/37
The $N = 28$ magic number

1st Spin-Orbit magic number

- p
- f
- $f_{5/2}$
- $f_{7/2}$
- 28

Study of **exotic nuclei**

A way to access part of NN interaction not at play in stable nuclei.
Onset of correlations - Indirect evidence

$N = 20, 28$: magic at $Z = 20$.
2^+ excitation energy

Onset of correlations - Indirect evidence

2. Decrease at $Z = 16$. . .
3. . . . and at $Z = 14$ as well.

$N = 20$ remains rigid up to $Z = 14$, while $N = 28$ vanishes.
Neutron excitations across $N = 28$.

$(\nu f_{7/2} \otimes \nu p_{3/2})^{J\pi=2^+}$.
Neutron excitations across $N = 28$.

$$(\nu f_{7/2} \otimes \nu p_{3/2})^{J\pi=2^+}.$$

Shell gap reduced $\Rightarrow E(2^+) \text{ reduced}$.

Neglects correlations.
Transfer reaction

Interest
- Direct way to probe shell structure
- Possible for relatively high intensity beam ($> 10^4$ pps)
- Performed on the radioactive $^{46}_{18}$Ar$_{28}$ nucleus.
Transfer reaction: $^{46}Ar(d, p)^{47}Ar$

Experimental Setup: SPEG at GANIL
Transfer reaction: $^{46}\text{Ar}(d, p)^{47}\text{Ar}$

Experimental Setup: SPEG at GANIL
Transfer reaction: $^{46}\text{Ar}(d, p)^{47}\text{Ar}$

Experimental Setup: SPEG at GANIL
Transfer reaction: $^{46}Ar(d, p)^{47}Ar$

Experimental Setup: SPEG at GANIL
$^{46}\text{Ar}(d, p)^{47}\text{Ar}$: Results

Level scheme

- ^{49}Ca
- ^{47}Ar

State configurations

- $3/2$:
 - $p_{1/2}$
 - $p_{3/2}$
 - $f_{7/2}$ with $N = 28$

- $1/2$:
 - $p_{1/2}$
 - $p_{3/2}$
 - $f_{7/2}$ with $N = 28$
\(^{46}\text{Ar}(d, p)^{47}\text{Ar} \): Results

Level scheme

- \(^{49}\text{Ca} \)
- \(^{47}\text{Ar} \)

State configurations

- \(^{3/2} \)
- \(^{1/2} \)

<table>
<thead>
<tr>
<th>State</th>
<th>(^{3/2})</th>
<th>(^{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{1/2})</td>
<td>(28)</td>
<td>(28)</td>
</tr>
<tr>
<td>(p_{3/2})</td>
<td>(28)</td>
<td>(28)</td>
</tr>
<tr>
<td>(f_{7/2})</td>
<td>(28)</td>
<td>(28)</td>
</tr>
</tbody>
</table>
46 Ar(d, p)47 Ar: Results

Level scheme

State configurations

Conclusions

1. Still single particle states in 47 Ar.
2. 7/2− intruder state.
Shell evolution from ^{20}Ca to ^{14}Si
Shell evolution from ^{20}Ca to ^{14}Si

1. $\pi s_{1/2}$ and $d_{3/2}$ orbits degenerate.
2. Attractive $\pi d_{3/2}-\nu f_{7/2}$ interaction.
Shell evolution from ^{20}Ca to ^{14}Si

1. $\pi s_{1/2}$ and $d_{3/2}$ orbits degenerate.
2. Attractive $\pi d_{3/2} - \nu f_{7/2}$ interaction.
Shell evolution from ^{20}Ca to ^{14}Si

1. $\pi s_{1/2}$ and $d_{3/2}$ orbits degenerate.
2. Attractive $\pi d_{3/2} - \nu f_{7/2}$ interaction.
3. Not strong enough effect.

$L.\ Gaudefroy,\ A.\ Obertelli$
Shell evolution: what else?

Correlations

\[\mathcal{H} = \mathcal{H}_{Mono} + \mathcal{H}_{Multi} \]

\(\mathcal{H}_{Mono} \) main component:

\[V_{Mono} = \frac{\sum J (2J + 1) V_{ij}^J}{\sum J (2J + 1)} \]

\(\mathcal{H}_{Multi} \): correlations (pairing, quadrupole, ...).
Onset of correlation at $N = 28$

- ^{48}Ca: Less than gap size
Onset of correlation at $N = 28$

- ^{48}Ca: Less than gap size
- ^{46}Ar: Promote 2 neutrons

Onset of correlation at $N = 28$

- ^{48}Ca: Less than gap size
- ^{46}Ar: Promote 2 neutrons

$L. \text{Gaudefroy et al.}, \text{Phys. Rev. Lett.}\text{97, 092501(2006)}.$

- ^{44}S: Spher./Def. shape coex.

$S. \text{Grévy et al.}, \text{Submit. to Phys. Rev. Lett.}$

- ^{42}Si: Deformed nucleus.

Shell evolution at $N = 28$: Summary

- ^{48}Ca
- ^{47}K
- ^{46}Ar
- ^{45}Cl
- ^{44}S
- ^{43}P
- ^{42}Si

Proton number
Shell evolution at $N = 28$: Summary
Shell evolution at $N = 28$: Summary
Shell evolution at $N = 28$: Summary

- ^{48}Ca
- ^{47}K
- ^{46}Ar
- ^{45}Cl
- ^{44}S
- ^{43}P
- ^{42}Si

![Graph showing the energy levels of atomic nuclei with a downward arrow indicating a decrease in energy.](image)
Shell evolution at $N = 28$: Summary
Concluding remarks

1. Atomic nuclei: A interacting fermions.
2. Shell structure and magic numbers.
Concluding remarks

1. Atomic nuclei: A interacting fermions.
2. Shell structure and magic numbers.
Concluding remarks

1. Atomic nuclei: A interacting fermions.
2. Shell structure and magic numbers.
5. Original models from stable nuclei.
7. Larger systems: from magic to strongly correlated.
Concluding remarks

1. Atomic nuclei: A interacting fermions.
2. Shell structure and magic numbers.
5. Original models from stable nuclei.
7. Larger systems: from magic to strongly correlated.
8. Correlations \(\iff\) deformation - Alexandre’s lecture.