ĨE

Lecture II

- introduction: helium droplets, doping with foreign species, spectroscopy
- alkali atoms and molecules on helium droplets
- spectra, absorption and magnetic circular dichroism
- identification of high spin trimers
- *ab initio* K_3 and Rb_3 , K_2Rb and KRb_2 quartet states
- quartet state shell structure, harmonic oscillator states
- the ultimate resolution: electron spin resonance

Helium nanodroplets

Superfluid helium droplets as nanocryostat

Spectroscopic linewidths?

KCl:O⁻₂ luminescence spectrum at 4.2K. From: Freiberg & Rebane in "Zero-Phonon Lines" (eds. Sild & Haller (Springer)) **Comparison of LIF spectra of dopants** on/in helium nanodroplets (Na₂ singlet vs. glyoxal):

Experiment

Alkali *n*-mers on He_N: High-spin selectivity

Homonuclear & heteronuclear alkali molecules

heteronuclear alkali molecules

Johann Nagl and Carlo Callegari

8

Wolfgang E. Ernst

Alkali-He_N pseudo diatomic: atomic excitation ns-np

Rb 5s on He_N surface, DFT calculation (help by F. Toigo) in: Brühl, Trasca, Ernst JCP 115, 10220 (2001)

Treat He droplet as a giant closed-shell atom Calculate (vdW) molecular potential by integrating vdW pair potentials over He density Approximate spectrum with F-C Factors

11

Key questions

Dopants with spin in external B-field

Carlo Callegari

Create spin precession:

Spin relaxation due to helium environment?

For atoms?

For molecules?

Related topic: helium buffer gas cooling of oriented atoms or molecules

Highly excited states and ionization of atoms For example: two step processes in He_N -Rb

Cold chemistry in confinement

initiate reactions with laser excited atoms, e.g. Cs $7p + H_2$

Rb on He nanodroplets: Rb₂ 1 ${}^{3}\Pi_{g} \leftarrow$ 1 ${}^{3}\Sigma_{u}^{+}$

Comparison of Frank-Condon factors to LIF spectrum

Spin-orbit coupling: alkali ³Π on helium

$H = H_{mol} + H_{d} + H_{SO}$

Basis: Eigenstates of H_{mol}

components of angular momenta along z: $|\Lambda\Sigma\rangle$ **H**_d **interaction with helium** (determined by integrating alkali-He pair potentials (Pascale) weighted by the helium density distribution)

H_{so}: Well known spin orbit Hamiltonian in $| \Lambda \Sigma \rangle$ basis (approximated R independent) In general: 12x12 matrix

Gerald Auböck

Tendencies: Cs₂ at left end, others between 1 and 3 on horizontal scale

J. Phys. Chem. A111, 7404 (2007), in memory of Roger Miller

TE)

Our model incl. Zeeman effect

(G. Auböck, J. Nagl, C. Callegari, and W.E. Ernst, J. Phys. Chem. A, 2007)

Rb₂: LIF, MCD with Simulation

K₂: LIF, MCD with Simulation

Institute of Experimental Physics

ŤE]

Photoinduced Spin Dynamics

Science 273, 629 (1996)

Wolfgang E. Ernst

E

Depletion spectra with mass selective detection (use quadrupole mass spectrometer)

Alkali trimer quartet state excitations

Calculations:

MOLPRO, Complete Active Space Self Consistent Field (CASSCF) & CASPT2

Andreas W. Hauser

(Phys. Rev. Lett. 100, 063001-1-4 (2008))

Wolfgang E. Ernst

Quartet trimers: Electronic structure

Wolfgang E. Ernst

ĨΕ

Homonuclear Alkali Trimers K₃ and Rb₃

A shell model for the quartet states

Time-independend Schrödinger equation $-\frac{\hbar^2}{2m}\nabla_N^2 + V_N \left| \psi = E\psi \right|$ in N dimensions: dimension $V(r) = \frac{1}{2}m\omega^2 r^2$ Choose isotropic harmonic oscillator potential: $\psi = R_{n,L}^{(N)}(r) Y_L^M(\theta_i)$ Apply factorization method: Solutions:

$$(x,y) \qquad (z)$$

$$hc\tilde{\nu}_{\rho}(2n+|\ell|+1) \equiv hc\tilde{\nu}_{\rho}(n_{\rho}+1) \qquad hc\tilde{\nu}_{z}(n_{z}+1/2)$$

$$\Delta E/hc = n_{\rho}\tilde{\nu}_{\rho} + n_{z}\tilde{\nu}_{z} - x_{\rho}n_{\rho}^{2}\tilde{\nu}_{\rho}$$

$$-x_{z}n_{z}^{2}\tilde{\nu}_{z} - x_{\rho z}n_{\rho}n_{z}\sqrt{\tilde{\nu}_{\rho}\tilde{\nu}_{z}}$$

A shell model for the quartet states

Further refinement: SO-coupling

Jahn-Teller parameters

Parameters in dimensionless units:

Vibronic spectra: the $1^4A_2' \rightarrow 2^4E'$ transition

Alkali trimer quartet state excitations

K₃ and Rb₃

(quartet): Hauser, Auböck, Callegari, Ernst, J. Chem.Phys. **132**, 164310 (2010)

(doublet): Hauser, Callegari, Soldan, Ernst, J. Chem. Phys. **129**, 044307 (2008) and **spectral predictions:** Chem.Phys. (in print)

heteronuclear: in preparation TE)

Level Structure and Magnetic Properties from One-Electron Atoms to Clusters with Delocalized Electronic Orbitals: Shell Models for Alkali Trimers by A.W. Hauser, C. Callegari, W.E. Ernst

in: P. Piecuch et al. (eds.), *Advances in the Theory of Atomic and Molecular Systems*, Progress in Theoretical Chemistry and Physics 20, DOI 10.1007/978-90-481-2985-0 30, Springer Science+Business Media B.V. 2009

Doublet states: Electronic shell model,

See e.g. Cocchini, Upton, Andreoni, J. Chem. Phys. 1989

Quartet states:

Our model relating the electronic structure to the eigenstates of the harmonic oscillator, cf. single particle states in quantum dots TE

43

Magnetic Resonance

Superfluid helium nanodroplets

Wolfgang E. Ernst

IE.

High resolution mw or rf spectroscopy?

LIF Detection of Microwave Absorption e.g. W. E. Ernst, S. Kindt, and T. Törring, Phys. Rev. Lett. <u>51</u>, 979(1983) **RTPI Detection of Microwave Absorption** Na₃, W.E. Ernst and O. Golonzka (1999)

W. E. Ernst, J. Kändler, C. Noda, J. S. McKillop and R. N. Zare, Hyperfine Structure of Bal, J. Chem. Phys. <u>85</u>, 3735-3743 (1986).

Molecules in/on helium droplets:

- Narrow linewidth on mw and IR transitions
- Large linewidth on optical transitions
 How about polarization methods?

Wolfgang E. Ernst

Shell Models, Erice, July 26-30, 2010

 \bigotimes

Pumping and probing

The optical ${}^{2}S_{1/2} \rightarrow {}^{2}P_{1/2}$ transitions can be used to manipulate and probe spin states

Optically Detected ESR

Markus Koch

Wolfgang E. Ernst

ESR on helium droplets

F

ESR on helium droplets

ESR on helium droplets

ESR on helium droplets

Modeling: Breit-Rabi formula

51

Electron spin density at alkali nucleus

Following Adrian [J. Chem. Phys. 32 (4), 972–981 (1960)], the relative change of hfs consists of two parts:

 $\delta a_{\rm HFS}$ $a_{\rm HFS}$ Pauli

$$=\frac{|\Psi_{n'00}(R_{\rm A},0,\theta)|}{|\Psi_{n00}(0,\theta)|^2} - 1$$

111/ (D 0 0)12

$$\frac{\delta a_{\rm HFS}}{a_{\rm HFS}}\Big|_{\rm vdW} = -\left(\frac{2}{E_{\rm A}} + \frac{1}{E_{\rm A} + E_{\rm He}}\right) \int_{V} \frac{f_6(|\vec{R}_A - \vec{R}|)C_6 \ \rho_0(\vec{R})}{|\vec{R}_A - \vec{R}|^6} \mathrm{d}\vec{R} \qquad (2)$$

Relative change of electron spin density at alkali nucleus in ppm for He_N droplet

N	Pauli	van der Waals	Pauli + van der Waals
		К	
500	+1630	-1294	+336
1000	+1831	-1464	+367
2000	+1928	-1558	+370
		Rb	
500	+1838	-1446	+392
1000	+2151	-1698	+453
2000	+2270	-1812	+458

see M.Koch, C. Callegari, and W. E. Ernst, Mol. Phys. 108 (7), 1005 (2010), issue in honor of R. N. Zare

(1)

Rabi oscillations

 $|\Psi(t)
angle = C_1(t)|\psi_1
angle + C_2(t)|\psi_2
angle$

$$P_{\rm n}(t) = |C_{\rm n}(t)|^2$$
, with $|C_1(t)|^2 + |C_2(t)|^2 = 1$

$$\frac{\partial}{\partial t} \begin{bmatrix} C_1(t) \\ C_2(t) \end{bmatrix} = -\frac{i}{2} \begin{bmatrix} -\Delta & \Omega \\ \Omega & \Delta \end{bmatrix} \begin{bmatrix} C_1(t) \\ C_2(t) \end{bmatrix}$$

$$\Delta = \omega_0 - \omega$$
 ... detuning

 Ω ... Rabi frequency

$$|\uparrow\rangle \qquad \boxed{\Delta} = a + kx$$
$$\Omega = AB_1 \sin\left(\frac{\pi}{a}x\right)$$

ESR on droplets: conclusions & future

- first demonstration of MR (ESR) on doped He_N
- hyperfine resolved ESR spectrum of ³⁹K, ⁸⁵Rb
- shifts (~400 ppm), droplet-size dependent: Fermi contact term
- coherent population transfer: Rabi oscillations

Currently in progress:

Poster by Martin Ratschek and Markus Koch (yesterday)

Wolfgang E. Ernst

The HeDrop Team

Dr. Andreas W. Hauser

 Π

Florian Lackner

Moritz Theisen

FUIF Fonds zur Förderung der wissenschaftlichen Forschung

Martin Ratschek

& EU Network "Cold Molecules"

Dr. Markus Koch

Dr. Carlo Callegari now Elettra, Trieste

Wolfgang E. Ernst

Shell Models, Erice, July 26-30, 2010

54

Johann Nagl now MIBLA Co

WE-Heraeus-Seminar No. 482

Helium Nanodroplets – Confinement for Cold Molecules and Cold Chemistry

Physikzentrum Bad Honnef, Germany May 29 to June 1, 2011

Scientific Organizers

Wolfgang E. Ernst and Markus Koch Institute of Experimental Physics Graz University of Technology Petersgasse 16 A-8010 Graz, Austria, Europe E-mail: wolfgang.ernst@tugraz.at

THE END

Wolfgang E. Ernst