TEP

Shell Models for Alkali Metal Trimers: Electronic Level Structure and Magnetic Properties from Experimental and Theoretical Investigations

Lecture I

- introduction: metal clusters, jellium, shell structure, molecule?
- Na₃ electronic excitation
- pseudorotation Jahn-Teller or pseudo Jahn-Teller?
- K_3 on argon clusters, K_3 femtosecond pump-probe
- *ab initio* K_3 and Rb_3 doublet states
- doublet state shell structure
- the ultimate resolution: electron spin density at the 3 nuclei

Wolfgang E. Ernst

Introduction: metal clusters, jellium, shell structure, molecule?

Metal Clusters

Valence electrons? shell model, e.g. Na₄

(Andreoni, PRL 75, 818 (1995)):

"regular molecule", e.g. ozone:

EXPERIMENTS ON ALKALI CLUSTERS, SOME HISTORY

• Schumacher, Kappes, et al.: ionization threshold

- Knight, de Heer et al.: optical spectra (neutrals)
- C. Brechignac et al.: optical spectra (ions)

jellium or molecules?

M. Kappes (experiment) & Koutecky, Bonacic-Koutecky (theory)

From Wang et al., JCP 1990

FIG. 7. Na₄ depletion spectrum. The measurement is contrasted to (i) *ab initio* calculations of vertical allowed transitions from rhombic Na₄ (D_{2n}) (Ref. 26) and (ii) electrostatic prediction of optical response (dotted line) for an appropriate metal spheroid $(a_{Na_4}/4a_{Na} = 0.857, \delta = 0.67, \Gamma = 0.03 \omega_0)$.

FIG. 8. Na, depletion spectrum. The measurement is contrasted to (i) pseudopotential calculations of vertical dipole allowed transitions from T_{ac} , D_{aa} , and D_{2a} forms (Refs. 26 and 27) and (ii) electrostatic computation (dotted line) of the optical response of a metallic sphere $(\alpha_{\infty,c}/8\alpha_{\infty,a} = 0.6912, \delta = 0, \Gamma = 0.07 \omega$; see text for details). Also shown is the position of the surface plasma resonance (ω_{α}) in bulk sodium based on volume plasmon measurements (Ref S^{-1})

EXPERIMENTS ON ALKALI CLUSTERS, SOME HISTORY

• v. Issendorf et al.: photoelectron spectroscopy, PRA 65, 063201(2002)

Wolfgang E. Ernst

Lecture I

- introduction: metal clusters, jellium, shell structure, molecule?
- Na₃ electronic excitation
- pseudorotation Jahn-Teller or pseudo Jahn-Teller?
- K₃ on argon clusters, K₃ femtosecond pumpprobe
- *ab initio* K₃ and Rb₃ doublet states
- doublet state shell structure
- the ultimate resolution: electron spin density at the 3 nuclei

Molecular excitation – electronic, vibrational, rotational Diatomic molecule and Born-Oppenheimer approximation

Molecular excitation - electronic, vibrational, rotational

- Polyatomic molecule of N atoms 3N-6 normal modes of vibration
- crossing of potentials (electronic degeneracy) due to symmetry or accidental \Rightarrow Breakdown of Born-Oppenheimer approximation

Here in case of trimers: Degeneracy due to symmetry \Rightarrow Jahn –Teller coupling

With additional accidental degeneracy, i.e. three states interacting \Rightarrow pseudo Jahn –Teller coupling

Jahn-Teller effect – from weak to strong coupling of electronic and nuclear motion

Jahn-Teller coupling

$$\begin{pmatrix} H_0(Q) \begin{cases} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \frac{p^2}{2} & k\rho e^{-i\varphi} + g\rho^2 e^{2i\varphi} \\ k\rho e^{i\varphi} + g\rho^2 e^{-2i\varphi} & \frac{p^2}{2} \end{pmatrix} \begin{pmatrix} \chi_+ \\ \chi_- \end{pmatrix} = E \begin{cases} \chi_+ \\ \chi_- \end{pmatrix}$$

TEP

CASES OF BERRY'S PHASE

Potential of 3 nuclei with *conical intersection*, matrix element $H_{ii} \sim$ nuclear displacement coord.

⇒ traversal of closed path around 0 leads to *sign change of wavefunction*

$$\hat{H}_{nuc} = -1/(2M) \nabla_R^2 - 1/M \vec{F}(R) \cdot \vec{\nabla}_R - ... + U_i(R)$$

with $\vec{F}(R) = \langle \alpha_i(R) | \vec{\nabla}_R \alpha_i(R) \rangle$

Aharanov-Bohm effect:

electron wavefunction experiences phase shift due to vector potential

$$\hat{H} = 1/(2m)[\hbar/igrad + \hat{A}]^2 + V$$

=
$$-\hbar 2/(2m) \nabla^2 + \hbar e/(2mi) \vec{A} \cdot \text{grad} + ... + V$$

PSEUDOROTATION

Wolfgang E. Ernst

Lecture I

- introduction: metal clusters, jellium, shell structure, molecule?
- Na₃ electronic excitation
- pseudorotation Jahn-Teller or pseudo Jahn-Teller?
- K₃ on argon clusters, K₃ femtosecond pumpprobe
- *ab initio* K₃ and Rb₃ doublet states
- doublet state shell structure
- the ultimate resolution: electron spin density at the 3 nuclei

SPECTROSCOPY OF SODIUM CLUSTERS WITH MASS SELECTIVE DETECTION

Na₃ – an asymmetric top molecule rotational quantum numbers N, K_a, K_c pseudorotational quantum number j (a vibration!)

rotational constants A = 0.135, B = 0.076, and C = 0.052 cm⁻¹

IE)

026

Q20

 V_3

in

• Pseudorotation integer quantized: j = 0, 1, 2, 3, ...●⇒ no Berry phase (W.E. Ernst & S. Rakowsky PRL 1995)

Barrier to pseudorotation

Rotation-Pseudorotation Hamiltonian, vibrational part:

 $h_{\nu} = T_{\nu} + FJ_{p}^{2} + \frac{1}{2}V_{3}(1 - \cos(3\varphi))$

Jahn-Teller Formalism (pr >> f(r)):

$$h_{\nu} = H_{Kinetic}(\rho, \varphi) + \frac{1}{2}\rho^2 - \sqrt{2}p\rho - f(\rho)\cos(3\varphi)$$

V

$$\chi^{u,j}(\rho,\phi) = \psi^u(\rho) e^{ij\phi}$$

$$h_v = H_{Kinetic}(\rho, \phi) + \frac{1}{2}\rho^2 - \sqrt{2}p\rho - f(\rho)\cos(3\phi)$$

(ibrational wavefunction:

$$\chi^{u,j}(\rho,\phi) = \psi^u(\rho) e^{ij\phi}$$

$$\chi^{-}(\rho, \psi) = \psi^{-}(\rho) e^{-\alpha}$$

$$\frac{-6}{11.66}$$
Barrier to pseudorotation
$$V_{3}^{u} = 2 \langle \psi^{u}(\rho) | f(\rho) | \psi^{u}(\rho) \rangle$$

$$10.15$$

-10^L Hamiltonian: N. Ohaski, M. Tsuura, J. T. Hougen, W. E. Ernst, S. Rakowsky, J. Mol. Spectrosc. 184, 22-34 (1997)

Wolfgang E. Ernst

1-5

Vibronic assignments in the first part of the B'-X system of Na₃

j > 0 bands twice as many rotational lines due to CORIOLIS interaction

 \Rightarrow Largely pseudo Jahn-Teller interaction!

States of the Three-Surface Excited State Potential and Transition Probabilities

Intensity calculations for the transitions from the ground state of Na₃ (Jahn-Teller system, k = 4.7, g = 0.076, $h\omega = 90$ cm⁻¹) into j = 0 levels of a Pseudo Jahn-Teller system (p = 7.98, d = 6.5, $h\omega = 56$

Intensity calculations for the transitions from the ground state of Na₃ (Jahn-Teller system, k = 4.7, g = 0.076, $h\omega = 90$ cm⁻¹) into j = 1 levels of a Pseudo Jahn-Teller system (p = 7.98, d = 6.5, $h\omega = 56$

Adiabatic Potential Surfaces

linear Jahn-Teller coupling

linear and quadratic Jahn-Teller coupling

linear pseudo Jahn-Teller coupling

Linear and quadratic pseudo Jahn-Teller coupling

Three-Surface Potential with Three-fold Barrier on the Lowest Sheet

Linear Pseudo Jahn-Teller and Linear Jahn-Teller Coupling

Linear Pseudo Jahn-Teller,

Linear Jahn-Teller and Quadratic Pseudo Jahn-Teller Coupling

$$f(\rho) \sim k\rho - \lambda \rho^2$$
 !!! (d=1, ε =0)

p=7.98 *d*=6.6
$$\varepsilon$$
=-2 $\hbar\omega \cong 56 \text{ cm}^{-1}$
k= 0.827 λ = 0.22

Linear and <u>Quadratic</u> Pseudo Jahn-Teller Coupling, and a <u>"Proper" Anharmonicity Term</u>

$$f(\rho) \sim \lambda \rho^2 - 2\alpha \rho^3 \qquad !!! (d=1, \epsilon=0)$$

$$p=7.98 \quad d=6.6 \quad \epsilon=-2 \quad \hbar \omega \cong 56 \text{ cm}^{-1}$$

$$\lambda = 0.0598 \quad \alpha = 0.0033$$

Linear Pseudo Jahn-Teller, <u>Linear Jahn-Teller Coupling</u> and a <u>,,Proper" Anharmonicity Term</u>

$$f(\rho) \sim k\rho - 2\alpha \rho^3$$
 !!! (d=1, ϵ =0)

$$p=7.98$$
 $d=6.6$ $\varepsilon=-2$ $\hbar\omega \cong 56$ cm⁻¹
 $\underline{k=0.177}$ $\alpha=0.003$

Probability density function $2\pi r \chi^*(\varphi, r) \chi(\varphi, r)$ for j=0 levels in a PJT system ($p=3.07, d=1, \epsilon=0$).

Energy is given in the units of $\hbar\omega = 127 \text{ cm}^{-1}$. For each energy level red, green and blue represent the probability functions associated with the lower, middle and upper sheets of the potential energy, respectively.

Similar: solid crystal exciton-phonon states (Eiermann & Wagner 1996) JCP 105, 6713

Na₃ B/B' surfaces: PJT and JT coupling + anharmonicity

Lecture I

- introduction: metal clusters, jellium, shell structure, molecule?
- Na₃ electronic excitation
- pseudorotation Jahn-Teller or pseudo Jahn-Teller?
- K₃ on argon clusters, K₃ femtosecond pumpprobe
- ab initio K₃ and Rb₃ doublet states
- doublet state shell structure
- the ultimate resolution: electron spin density at the 3 nuclei

K₃ femtosecond pump-probe experiments (PhD thesis S. Rupp (FU Berlin 1996)

Wolfgang E. Ernst

Shell Models Lecture I, Erice, July 26-30, 2010

26

Femtosecond pump-probe scheme

Vibronic level spacings vs. JT coupling strength

Fig. 3. Correlation diagram showing the level structure of the single-mode linear Jahn-Teller problem (g = 0) as a function of the linear coupling parameter k. Vibrational energy and k are presented in reduced units in which the vibrational frequency is 1.

Lecture I

- introduction: metal clusters, jellium, shell structure, molecule?
- Na₃ electronic excitation
- pseudorotation Jahn-Teller or pseudo Jahn-Teller?
- K₃ on argon clusters, K₃ femtosecond pumpprobe
- *ab initio* K₃ and Rb₃ doublet states
- doublet state shell structure
- the ultimate resolution: electron spin density at the 3 nuclei

Homonuclear Alkali Trimers K₃ and Rb₃

Institute of Experimental Physics TEP JT distorted 12E' state of K3 JT distorted 12E' state of Rbs 6000 6000 5000 5000 4000 4000 Energy (cm⁻¹) Energy (cm⁻¹ 3000 3000 2000 2000 12E 12E 1000 1000 12B 12B 0 Q_{z} (A) -0.5 -0.5 0.5 0 0.5 -1 -1 Q_ (A)

Figure 2: Potential energy curves for the $1^2E'$ ground states of K₃ and Rb₃, calculated at the RS2C level of theory. Energies are printed as functions of the Q_x coordinate, Q_y is set to zero. The double degeneracy of the ${}^2E'$ states at D_{3h} symmetry is nearly symmetrically lifted when lowering the symmetry to C_{2v}. The global minima of B₂ symmetry (blue) are reached at negative Q_x values, corresponding to obtuse distortions. The saddle points of the A₁ states (red) at positive Q_x values look like local minima in the one-dimensional scan. The zero of the energy is set to the global minimum.

A. W. Hauser, C. Callegari, P. Soldan, W. E. Ernst, Chem. Phys., in press Permanent el. Dipole: Ground state

Wolfgang E. Ernst

K₃0.3 D, Rb₃0.27 D

33

Lecture I

- introduction: metal clusters, jellium, shell structure, molecule?
- Na₃ electronic excitation
- pseudorotation Jahn-Teller or pseudo Jahn-Teller?
- K₃ on argon clusters, K₃ femtosecond pumpprobe
- *ab initio* K₃ and Rb₃ doublet states
- doublet state shell structure
- the ultimate resolution: electron spin density at the 3 nuclei

shell model for the doublet states

A common approximation: single-electron in effective spherical potential

TE)

37

Level Structure and Magnetic Properties from One-Electron Atoms to Clusters with Delocalized Electronic Orbitals: Shell Models for Alkali Trimers by A.W. Hauser, C. Callegari, W.E. Ernst

in: P. Piecuch et al. (eds.), *Advances in the Theory of Atomic and Molecular Systems*, Progress in Theoretical Chemistry and Physics 20, DOI 10.1007/978-90-481-2985-0 30, Springer Science+Business Media B.V. 2009

Doublet states: Electronic shell model,

See e.g. Cocchini, Upton, Andreoni, J. Chem. Phys. 1989

Quartet states:

Our model relating the electronic structure to the eigenstates of the harmonic oscillator, cf. single particle states in quantum dots \Rightarrow Lecture II on Friday

Lecture I

- introduction: metal clusters, jellium, shell structure, molecule?
- Na₃ electronic excitation
- pseudorotation Jahn-Teller or pseudo Jahn-Teller?
- K₃ on argon clusters, K₃ femtosecond pumpprobe
- *ab initio* K₃ and Rb₃ doublet states
- doublet state shell structure
- the ultimate resolution: electron spin density at the 3 nuclei

ŤEP

Microwave Man

Wolfgang E. Ernst

Shell Models Lecture I, Erice, July 26-30, 2010

40

Idea from diatomic dipole measurements: W. E. Ernst, S. Kindt, and T. Törring, Phys. Rev. Lett. <u>51</u>, 979-981 (1983), For clusters: W. E. Ernst and J. Kändler, High Resolution Spectroscopy of Molecules and Small Clusters in Molecular Beams, in: Laser Spectroscopy IX, eds. M. S. Feld, J. E. Thomas, and A. Mooradian, 1989, 408-411

42

Optical Pumping and Probing

JOURNAL OF CHEMICAL PHYSICS

VOLUME 117, NUMBER 15 p. 7102 - 7116 15 OCTOBER 2002

Hyperfine coupling and pseudorotational motion interaction in Na₃

L. H. Coudert^{a)}

Laboratoire de Photophysique Moléculaire, CNRS, Bâtiment 350, Université de Paris-Sud, 91405 Orsay Cedex, France

W. E. Ernst and O. Golonzka

Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802

(Received 12 February 2002; accepted 30 July 2002)

FIG. 4. The three nonsuperimposable configurations of Na₃ as chosen in this work in order to apply the IAM approach (Refs. 19 and 20) used in Sec. III A 2. Configurations 1, 2, and 3 correspond to vibrational wave functions centered at $\chi_p = 0$, $2\pi/3$, and $4\pi/3$, respectively. For these three configurations, atom numbering are indicated by the numbers 1, 2, or 3. All atoms are located in the *xz*-plane. The intermediate configurations labeled S_{12} , S_{23} , and S_{31} correspond to saddle points of the potential energy surface.

FIG. 5. The shape of the potential energy surface of Na₃ in its lower Jahn-Teller split *E*-type electronic state, as obtained by Cocchini *et al.* (Ref. 2). The surface is drawn as a function of the dimensionless Q_x and Q_y vibrational coordinates. Three minima numbered 1, 2, and 3, can be seen. The saddle point of interest for the pseudorotational motion is indicated by the letter S and is 130 cm⁻¹ above the three minima. The point corresponding to $Q_x = Q_y = 0$ is the conical intersection point located 667 cm⁻¹ above the minima. In the surface the dashed line indicates the tunneling path corresponding to the pseudorotational motion.

CONCLUSIONS

- **1** Tunneling barrier > 200 cm⁻¹ **2** dipole moment $\mu_{el} \le 0.05$ D
- **3** Magnetic hyperfine structure << atomic Na 3s hfs, and < 3p hfs

⇒ delocalized electron orbital ⇒ shell model for metal clusters

Institute of Experimental Physics

(Penn State U. MIT Intel Corp.) Stefan Rakowsky

Other Penn State

- pseudorotation

and

PhD's:

David Vituccio - optical –optical double resonance

Funding from NSF and ACS-PRF

ŤEP

47

Summary from an intellectual point of view

Very detailed investigation of certain alkali trimer properties like

Painful experimental studies of rotational, fine and even hyperfine structure, in cases that seemed to be clear from more superficial considerations

yield

 an essentially different result for a fundamental question of a geometric phase in a molecular wavefunction

 the confirmation of the metallic character of a metal cluster of as few as 3 atoms

Wolfgang E. Ernst

Lecture II (Friday)

alkali trimers on helium nanodroplets: van der Waals bound, high spin states

