

Erice 2010

Photoelectron spectroscopy on simple metal clusters

B.v.Issendorff

What is the correct description of a simple metal nanoparticle?

High or low symmetry Supermolecule

Trapped Fermi gas (parabolic trap filled with electrons)

Electron shells: spherical box model

Electron levels in different spherical model potentials

Shell structure in a real cluster

The atomic structure perturbs the electron angular momentum eigenstates

Ideal probe: Photoelectron-spectroscopy (Lineberger, Bowen, Smalley, Cheshnovsky, Meiwes-Broer...) Ionization potentials of silver clusters: evidence for perturbed shell structure

Alameddin et al. Chem.Phys. Lett. 192, 122 (1992)

Program

Experiment Photoelectron spectroscopy cluster thermalization

Sodium clusters

Electronic shell structure Interaction with geometric structure Cluster shapes: comparison to simple models Structure of larger clusters Comparison with potassium clusters

Noble metal clusters

Electronic structure Geometrical structure special case: gold clusters Comparison Na, Cu, Ag, Au

Angle resolved photoelectron spectroscopy Basics Results on Na, Ag, Cu

Experiment

Cluster Thermalization

Very low temperatures

Caloric curve of clusters thermalized in RF-Trap

Mass spectrum of sodium clusters

Photoeffect:

$$E_{kin} = hv - E_{bin}$$

broadening effects:

- vibrational (de)excitation
- hole lifetime

PES on hot sodium clusters

Jellium levels:

1s 1p 1d 2s 1f 2p 1g 2 8 18 <u>20</u> 34 <u>40</u> <u>58</u>

ideal electron shell structure!

positive negative Na₃₉ Na 40 e-1f Na₄₀ Na₄₂⁺ 2р 41 e⁻ 1g 3,5 3,0 2,5 2,0 1,5 1,0 0,5 6,5 5,5 5,0 0,0 7,0 6,0 4,5 4,0 3,5 binding energy [eV] binding energy [eV]

Identical DOS despite different geometrical structures!

Temperature dependence of PES

20 valence electrons: spherical shape

Universität Freiburg

Strong splitting of d-state:

electron-lattice interaction!

PES of Na_n^- : n = 20-40

T = 100 K

DFT- calculations by M. Moseler and B. Huber

Spherical shape only for closed shell sizes (electron numbers 8, 20, 40, 58, 92..)

Radii as derived from moment of inertia

34 electrons: closed shell!

Deformation: avoided crossings

Clemenger-Nilsson-model

Quadrupole deformation:

Perturbing potential V(r, θ , ϕ) = f(r) Y₂₀ (θ , ϕ)

 \Rightarrow mixing of states with $\Delta I=2$

 \Rightarrow avoided crossing between 1f and 2p

 \Rightarrow stabilization of deformation

Deformation: the 34 electron case

Prolate (quadrupole) deformation: mixing between 1f and 2 p stabilizes nonspherical shape of closed shell structure

Deformation: the 40 electron case

Octupole deformation mixes 2p and 1g ($\Delta I=3$):

Stabilization of deformation

Simulated structure of hot Na₄₀

A.Rytkönen et al., PRL 80, 3940 (1998)

Experiment/DFT

Program

Experiment Photoelectron spectroscopy cluster thermalization

Sodium clusters

Electronic shell structure Interaction with geometric structure Cluster shapes: comparison to simple models Structure of larger clusters Comparison with potassium clusters

Noble metal clusters

Electronic structure Geometrical structure special case: gold clusters Comparison Na, Cu, Ag, Au

Angle resolved photoelectron spectroscopy Basics Results on Na, Ag, Cu

PES of Na_n^- : n = 39-309

O. Kostko, B. Huber, M. Moseler, and BvI, Phys. Rev. Lett. 98, 043401 (2007)

Sodium: Mackay / anti-Mackay stacking

Universität Freiburg

Comparison with theory

Closed shell icosahedral stuctures!

Abrupt structure change at size 305

Universität Freiburg

Crystal field splitting in clusters

Splitting of angular momentum eigenstates

Universität Freiburg

octahedral symmetry

icosahedral symmetry

higher degeneracy!

Symmetry perturbation

Size dependence of spectra

Spectra of Na_n⁻ with n=210-270:

strong variation with size

highly structured spectra indicate high symmetry!

Universität Freiburg

Na_n⁻

Energy axis scaled by Fermi energy

Program

Experiment Photoelectron spectroscopy cluster thermalization

Sodium clusters

Electronic shell structure Interaction with geometric structure Cluster shapes: comparison to simple models Structure of larger clusters Comparison with potassium clusters

Noble metal clusters

Electronic structure Geometrical structure special case: gold clusters Comparison Na, Cu, Ag, Au

Angle resolved photoelectron spectroscopy Basics Results on Na, Ag, Cu

Comparison of alkali and noble metals

Predicted cluster geometries

Universität Freiburg

PES of noble metal cluster anions

Universität Freiburg

highly degenerate states for copper and silver!

size 58: appearance of a new shell (2d)

Counting electrons: gold clusters

PES of Au_n^- , n = 58-69

Comparison Na-Cu-Ag-Au

Very similar !

Program

Experiment Photoelectron spectroscopy cluster thermalization

Sodium clusters

Electronic shell structure Interaction with geometric structure Cluster shapes: comparison to simple models Structure of larger clusters Comparison with potassium clusters

Noble metal clusters

Electronic structure Geometrical structure special case: gold clusters Comparison Na, Cu, Ag, Au

Angle resolved photoelectron spectroscopy Basics Results on Na, Ag, Cu

Single photon effect on atoms, molecules or clusters: angular distribution of photoelectrons can be described by "ß-parameter"

Cooper-Zare formula

Calculation of $\ensuremath{\mathbb{S}}$ for ionization out of an angular momentum eigenstate (averaged over $\ensuremath{\mathsf{m}}_{\ensuremath{\mathsf{l}}})$

$$\beta = \frac{l(l-1)\sigma_{l-1}^{2} + (l+1)(l+2)\sigma_{l+1}^{2} - 6l(l+1)\sigma_{l-1}\sigma_{l+1}\cos(\delta_{l+1} - \delta_{l-1})}{(2l+1)[l\sigma_{l-1}^{2} + (l+1)\sigma_{l+1}^{2}]}$$

: angular momentum

1

- $\delta_{l \pm 1}$: phase shift of outgoing $(l \pm 1)$ wave
- $\sigma_{l \pm 1}$: radial dipole matrix element

$$\sigma_{l\pm 1} = \int_{0}^{\infty} R_{il}(r) r R_{f(l\pm 1)}(r) dr$$

J. Chem. Phys. 48, 942 (1968)

Variation of ß with I and δ

Imaging PES: principle

Projection of emitted photoelectron onto MCP:

Measurement of angular and kinetic energy distribution

laser polarization 308 nm

raw data

Imaging spectrometer

Laser polarization

Presentation of spectra as (R, Θ) - Graphs

Angular distribution of electron shells

p-Basex deconvolution

Photon energy dependence

atomic closed shell

Universität Freiburg

Extracted beta parameters

Science 102, 1323 (2009)

Universal behaviour of I-states

Comparison with model calculations

Silver clusters: angular distributions

Photoelectron spectrum

Beta parameter

Comparison sodium, copper, silver

Scaled to

Summary

Sodium clusters: ,,perfect" shell structure

Imaging spectroscopy: angular resolved PES of clusters

Perpendicular distributions: indicate destructive interference of outgoing partial waves

Energy dependence: clear reminiscence of angular momentum state

Acknowledgment

Thanks to

Oleg Kostko: PES

Christof Bartels: ARPES Christian Hock: caloric curves/ ARPES Raphael Kuhnen Adam Piechaczek ARPES

Jan Huwer: ARPES

€€ DFG