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There is good evidence suggesting that there are many
string vacua with no moduli (BP, GKP, KKLT, DD, BDP)

“the landscape”

What is the hope?

• input for model-builders

• motivation for formal theorists

There are two questions we can try to study using the
landscape

• “WHAT” question → which string vacuum?

• “WHY” question → why this vacuum and no other

We focus on the “what” question
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WHAT question → provides input for theory
(model-building)

basic idea =⇒ we are trying to find a needle in a
haystack, so it helps to know the distribution of the

haystack

Vacua counting ideas can help!

→ Help us locate interesting models and
phenomenology within string theory, non-generic

selection criteria, etc.

Background (Ashok, Denef, Douglas, GKP, KKLT, ....)

General idea −→ look at Type IIB compactified on CY 3-fold

perform orientifold → projects out by worldsheet parity

→this theory preserves 4 supersymmetries (N=1)
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this theory is also equivalent to a limit of F-theory
compactified on a CY 4-fold (Sen)

M4 = (X3×T 2)
Z2

→we will use both pictures interchangeably

moduli → axio-dilaton, complex structure, Kähler

now, add FLUXES to generate W =
∫

G ∧ Ω(z)

→ fixes the complex structure moduli and axio-dilaton

n = # of unprojected complex structure moduli

4n + 4 = # of total fluxes we can turn on

the only moduli left will be the Kähler moduli

if dilaton weak and size of CY is larger than ls, then
integrating out is consistent
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V = eK(|DW |2 − 3|W |2) + D2

SUSY condition ⇒ DaW = ∂aW −W∂aK

parameterize fluxes with integral basis {Σα} for
H4(M4, Z)

• Nα → int. coeff. of G4 over {Σα}
• Πα(z) =

∫
Σα ∧ Ω4(z) → periods

can find a new basis for fluxes using GVW
superpotential

↓

G4 = W̄Ω4 −DAWDAΩ4 + D0DIWD0DIΩ4 + c.c.
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So, what’s the plan of action?

constraints → SUSY, RR tadpoles (Gauss’ Law for
space-filling charge)

⇓
We can find a simple parameterization for the fluxes as

they appear in W , DW and the tadpole condition

⇓
Now we count SUSY flux vacua...

↓
• make a choice of 4n + 4 fluxes Nα which satisfy

Flux− charge = L = 1
2NηN ≤ L∗ = O − charge

• then solve DW = 0 → to impose SUSY and fix
complex structure moduli and axio-dilaton

so, off we go!

⇓
Integrate over fluxes and moduli, imposing DW = 0 by
a δ function and tadpole cancellation by a step-function
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Nsusy(L ≤ L∗) =
∑
vac.

θ(L∗ − L)

=
1

2πı

∫
dα

α
eαL∗N (α)

where N (α) =
∑

vac e−
α
2 NηN

and the contour is parallel to the imaginary axis, passing 0 to
the right

N =
∑

N

∫

M
d2n+2z δ2n+2(DW )| det D2W |e−αL

∼
∫

M
d2n+2z

∫
d4n+4N e−

α
2 NηNδ2n+2(DW )| det D2W |

| det D2W | → Jacobian factor from changing δz(DW ) to
δDW (DW )

↓
now δ fixes fluxes instead of moduli
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rescale N → N√
α

⇓

N (α) scales as α−2(n+1)

⇓

Nsusy(L ≤ L∗) = θ(L∗)
L2n+2∗

(2n+2)!N (α = 1)

Note scaling of N(L ≤ L∗) with L∗

transform integral from Nα to X = W , Y = DW and
Z = D2W → throws in another Jacobian

⇓

N(L ≤ L∗) =
(2πL∗)2n+2

(2n + 2)!
| det η|−1

2

∫

M
d2n+2z det g ρ(z)

where

ρ(z) = π−2n−2

∫
d2Xd2Ze−|X|

2−|Z|2|X|2 det M(X, Z,F)

• FIJK(z) → geom. data of CY → deriv. of periods Π(z)

• L∗, n, det η → constants set only by CY and orientifold

• g → metric on comp. struc. mod. space M
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Now that we can count the vacua, what do we do with it?

We want to study the distribution of gauge group rank
among vacua

⇓
specifically, net D3-brane charge

from tadpole condition → ND3 = L∗ − L

N(L ≤ L∗) = CcyL
2n+2
∗

↓
N(L ≤ L∗∗) = CcyL

2n+2
∗∗

dependence on L∗∗ comes only from θ(L− L∗∗) → goes
only into rescaling of α

Density → ρ = ∂N
∂L = (2n + 2)CcyL

2n+1
∗∗

Each flux vacuum weighted equally
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Average Charge

⇓

〈ND3〉 = L∗ − 1

CcyL
2n+2∗

∫ L∗

0

dLL
∂N

∂L

⇓

〈ND3〉 = L∗
2n+3 =

χ(M4)

24(2h
2,1
− +3)

Note → independent of details of CY structure,
singularities, etc.

↓
depends only on h2,1

− (X3) and χ(M4) (background charge)

Let’s look at the fraction of vacua with ND3 ≥ R, i.e.
L ≤ L∗ −R

↓

η = (L∗−R)2n+2

L2n+2∗
=

(
1− R

〈ND3〉(2n+3)

)2n+2

∼ e
− R
〈ND3〉
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Fractional density = − ∂η
∂R

⇓

σ = 1
〈ND3〉e

− R
〈ND3〉

depends only on 〈ND3〉, not even on χ(M4)

CAVEATS

• we weight each “vacuum” equally

• cN degeneracy due to open string dynamics (Douglas)

• brane/anti-brane pairs → change rank, not charge

• continuous flux approximation? (DD,DGKT)

• effective field theory limit? (Banks)
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Can we see correlations? → gauge group rank in small
(tree-level) cosmological constant limit

in SUSY vacua, V = −3|W |2

Count vacua with L ≤ L∗, |V | ≤ |V∗| = 3λ∗

↓

Nsusy(L ≤ L∗, |W |2 ≤ λ∗) =

∫

M
d2n+2z

∫ λ∗

0
dλ

1

2πı

∫
dα

α
eαL∗ν(z, α, λ)

where

ν(z, α, λ) =

∫
d4n+4N e−αLδ(|W |2 − λ) δ2n+2(DW ) | det D2W |

rescaling N → N√
α

and taking limit λ∗ ¿ L∗ (λ∗ → 0) gives

⇓

Nsusy =
22n+3π(2n + 2)

(2n + 2)!
L2n+1
∗ λ∗| det η|−1

2

∫

M
d2mz det gI(F)

I(F) =

∫
d2nZe−|Z|

2| det M ′(F , Z)|2
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Nsusy(L ≤ L∗, |W |2 ≤ λ∗) = BcyL
2n+1
∗ λ∗

⇓
Nsusy(L ≤ L∗∗ ≤ L∗, |W |2 ≤ λ∗ ¿ L∗) = BcyL

2n+1
∗∗ λ∗

ρ = ∂N
∂L = (2n + 1)BcyL

2nλ∗

〈ND3〉 = L∗ − 1

BcyL
2n+1∗ λ∗

∫ L∗

0

dL ρ(L) · L

⇓
〈ND3〉 = L∗

2n+2 in small c.c. limit

σ(R) ∼ 1
〈ND3〉e

− R
〈ND3〉

Note → 〈ND3〉smallc.c. is almost the same as 〈ND3〉, but
not quite

〈ND3〉smallc.c.
〈ND3〉 = 2n+3

2n+2 > 1

→ slight correlation
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Next step: consider how to count
vacua with standard model

embeddings

Why? → look for what features of the string
compactification are important

we may not get the real world out of this

But, we will hopefully get insight into where to look to
get realistic models (ie., what types of CY’s, associated

hidden sectors, exotics, etc.)

We will consider a “technology demonstrator” - Type
IIB string theory on a T 6/Z2 × Z2 orientifold

↓

We will characterize flux vacua issues
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T 6/Z2 × Z2(×ΩR)

↓

α : (z1, z2, z3) → (−z1,−z2, z3)

β : (z1, z2, z3) → (z1,−z2,−z3)

orientifold involution

R : (z1, z2, z3) → (−z1,−z2,−z3)

generates O3-,O7-planes (orientifold fixed planes)

51 complex structure moduli, 3 Kähler moduli

want to wrap D-branes on this manifold

→ we will look for a Pati-Salam left/right model arising
from the gauge theory on D-branes

15



Gauge group = U(4)× SU(2)L × SU(2)R

→ embedding of branes determines open string gauge grp.,
chiral matter

wrapping numbers on T 6 → (n1,m1)(n2,m2)(n3,m3)

↓

m =wrapping number on T 2

(IIA dual → wrapping no. on a-cycle)

n =magnetic flux on T 2 ( m
2π

∫
F = n)

(IIA dual → wrapping no. on b-cycle)

will put SM branes at orbifold or orientifold fixed points (odd
generations)

• N branes at orbifold fixed point → U(N
2 )

• N branes at orientifold fixed point → Sp(N)

chiral matter in bifundamentals → string stretching
between two branes (also sym. and anti-sym)

→ Iab = # of chiral mults. in bifund.
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What constrains the branes we can put in?

• RR tadpoles (Gauss’ Law on space-filling charges)

∑
Nan1n2n3 = 16− 32Nflux

−
∑

Nan1m2m3 = 16

−
∑

Nam1n2m3 = 16

−
∑

Nam1m2n3 = 16

• NSNS tadpoles (preserve supersymmetry)(BDL)

∑
tan−1

2 (miAi, ni) = 0 mod 2π

for each brane

• K-theory no global SU(2) anomaly (W,CU)

∑
Nam1m2m3 = 0 mod 4

∑
Nan1n2m3 = 0 mod 4

∑
Nan1m2n3 = 0 mod 4

∑
Nam1n2n3 = 0 mod 4

→ need to satisfy RR and K-theory, but NSNS only for
SUSY
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no discrete B-field turned on

visible sector:

NU(4) = 8 (1, 0)(3, 1)(3,−1)

NSp(2)L
= 2 (0, 1)(1, 0)(0,−1)

NSp(2)R
= 2 (0, 1)(0,−1)(1, 0)

why Sp(2) = SU(2)?

• no U(1) ⊂ U(2) anomaly (would require anti-doublets or
GS mechanism)

• SUSY everywhere in mod. space → fewer constraints

visible sector doesn’t satisfy RR tadpoles → need hidden sector

• D3 charge of visible sector overshoots → need negative con-
tribution from hidden sector

• also need SUSY (will require that only one charge can be
negative per brane, with three positive)

to get a SUSY brane with negative charge, need a magnetized
D9-brane (all m’s and n’s nonzero)

18



Fixing Kähler Moduli

→ there are 3 Kähler moduli

SUSY constraints arise from NSNS tadpoles and from
non-perturbative corrections to W (superpotential)

• if we overconstrain → generically, no SUSY sol’n

• if we underconstrain → unfixed moduli

need interplay between constraints

→ we won’t deal with non-pert. corrections

visible sector → A2 = A3 (2 moduli unfixed)

brane constraints → 1 or 2 generically

• 1 NSNS tadpole → need 1 constraint from W

• 2 NSNS tadpole → want no constraints from W
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One interesting thing to find → model with the most
flux

# of flux vacua scale as N 2n+2
flux

brane construction which allows for the largest number
of flux will have the most flux vacua

with many flux vacua, more likely to have “accidental”
cancellation of cosmological constant, unification, etc.

↓

not a “statistical prediction,” but a good way to find
models which are interesting for phenomenology!
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Will run a computer search for hidden sectors (1D lines)

• pure D3-,D7-branes → SUSY on all Kähler mod. space

• magnetized D9-brane → contributes negative D3-charge,
positive D7 charges

↓
each imposes one NSNS tadpole constraint

→ we will look for 1 magnetized D9-brane which (along
with pure D3-,D7-branes) can satisfy all tadpoles

note that since A2 = A3, we can flip wrapping #’s by
(n2,m2) ↔ (n3,m3) and still satisfy same NSNS constriant

↓
we will include these in search

what we don’t look for

• points (2 distinct magnetized D9-brane stacks)
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Results:

ignoring K-theory constraints: 109 1D surfaces in Kähler
moduli space with consistent hidden sectors

→ all have no SU(3)qcd chiral exotics (consequence of RR
tadpole cancellation/cubic anomaly cancellation)

But when we impose K-theory constraint: only 5 1D
surfaces with hidden sectors

magnetized D9 brane Na Nã ND3,D7i
nmax

flux

1 (−2, 1)(−3, 1)(−4, 1) 2 2 (40,0,0,0) 1
2 (−2, 1)(−3, 1)(−3, 1) 4 - (16,0,2,2) 0
3 (−2, 1)(−2, 1)(−7, 2) 2 0 (0,0,0,6) 0
4 (−2, 1)(−2, 1)(−7, 2) 0 2 (0,0,6,0) 0
5 (−2, 1)(−2, 1)(−5, 1) 2 2 (24,0,0,0) 0
6 (−2, 1)(−2, 1)(−4, 1) 2 2 (8,0,2,2) 0

4 of these have hidden sectors where only Nflux = 0 is allowed
→ doesn’t fix complex structure moduli (the one with flux is

the MS model)

we see that the K-theory anomaly constraints are VERY
IMPORTANT
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one more trick up our sleeves: turning on discrete B-field →
T-dual to having a tilted T 2

↓
RR tadpole constraint now IMPLIES K-theory contraint!

if we want a tilted torus → invariance under orientifold action
implies only one non-trivial choice

(n,m)i → (n, m + n
2 )i

tilting even one torus lets an m be half-integer and changes the
wrapping numbers of orientifold fixed planes → shifts K-theory

condition

new K-theory condition is equivalent to RR-tadpole condition

to get visible sector right, can only shift at most two tori

But RR tadpole conditions also shift, because # of
orientifold planes decreases for tilted torus case

We are searching for these models now ....
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CHIRAL EXOTICS

for no tilted tori or two tilted tori → no SU(4) chiral exotics

implied by anomaly cancellation

→ both tori have the same tilt → Ia,O = 0 → no sym. or
anti-sym. reps.

↓
anomaly cancellation will require # fund. = # anti-fund. →

imposed by RR tadpole constr.

for one torus tilted → Ia,O 6= 0

↓

sym. and anti-sym. reps contribute to anomaly → so must
fund. + anti-fund.

# fund. −# anti-fund. = −24 → regardless of hidden
sector!

→ for one discrete B-field, chiral exotics can be a problem!
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Conclusions:

We can learn a LOT about how to build models by
studying the “landscape” of vacua

Some lessons:

• K-theory constraints significant

• discrete B-field can solve K-theory constraint, but restrict
hidden sector charges

• helpful to have orientifolds where the O3-planes give large
negative D3-charge (to compensate for visible sector)

• Need to understand Kähler moduli stabilization

the type of constraints we get from non-pert. corrections to W

will tell us what types of SM constructions can be generically
realized with no moduli

Future directions

• find “point” solutions (2 magnetized branes) → hopefully
more constructions

• non-Sp(2) constructions, non-Pati-Salam, non-left/right

• look at more general constructions on more general orien-
tifolds (discrete torsion, Chan-Paton action, etc.)
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