# Deconvolution of Atomic Photoabsorption Spectra: a Match between Theory and Experiment

Tu-nan Chang<sup>a\*</sup> (張圖南), Yuxiang Luo<sup>a</sup> (羅宇翔),
Hok-Sum Fung<sup>b</sup> (馮學深) and Tai-Sone Yih<sup>b</sup> (易台生)

<sup>a</sup>Department of Physics and Astronomy, University of Southern California,
Los Angeles, CA 90089-0484, U.S.A.

<sup>b</sup>Department of Physics, National Central University, Chung-Li 320, Taiwan, R.O.C.

We present in this paper an extension of a recently proposed deconvolution procedure to compare directly the theoretical and experimental spectrum of a doubly excited ultra-narrow and nearly symmetric resonance in atomic photoabsorption. Our discussion is based on a set of analytical relations in terms of the variations of i) the ratio between the resonance width  $\Gamma$  and the experimental energy resolution  $\Omega$  in the limit when  $\Gamma/\Omega \ll 1$  and ii) the column density nl of the media in a photoabsorption experiment.

### I. INTRODUCTION

In an attempt to estimate the width of a narrow isolated doubly excited resonance from measured spectra in the absence of an ultrahigh-energy resolution, Fang and Chang <sup>1</sup> have recently proposed a deconvolution procedure which enables a direct extrapolation to infinite energy resolution using a set of explicit analytical relations in terms of the ratio R of the resonant width  $\Gamma$  and the experimental energy resolution  $\Omega$  in the limit of  $R = \Gamma/\Omega \ll 1$ . This procedure applies well for a photoionization experiment when the photoion and/or the photoelectron are measured directly. Unlike the photoionization, the resonant spectra in a photoabsorption experiment is determined by detecting the light attenuation through a medium. It is known that the measured cross section is significantly affected by the column density nl of the medium and the experimental monochromator (or slit) function  $\mathcal{F}^2$ 

The photoabsorption cross-section  $\sigma^{Pa}(E)$  at a photon energy E is determined experimentally using the Beer-Lambert law.

$$I(E) = I_o(E) e^{-nl\sigma^{Pa}(E)}.$$
 (1)

where  $I_o$  is the intensity of the incident light, I is the attenuated intensity of the transmitted light, and nl is the column density. At a photon energy E,  $I_o$  and I can be expressed in terms of the slit function  $\mathcal{F}$  centered at E and characterized by an energy resolution  $\Omega$ , i.e.,

$$I_o(E) = \int i_o \mathcal{F}(E' - E; \Omega) dE'$$
 (2)

and

$$I(E) = \int i_o \mathcal{F}(E' - E; \Omega) e^{-nl \sigma(E)} dE', \qquad (3)$$

where  $\sigma$  is the cross section at an infinite energy resolution (i.e., at  $\Omega=0$ ). From Eqs. (1-3), the measured resonance structure in a photoabsorption experiment is represented by a convoluted spectrum in the form of

$$\sigma^{Pa}(E) = -\frac{1}{nl} \ln(\int \mathcal{F}(E' - E; \Omega) e^{-nl \sigma(E')} dE'). \tag{4}$$

As expected, when  $nl \to 0$ , the cross section takes the same form of the photoionization given by Eq. (3) of Ref. 1, i.e.,  $\sigma^{Pa} \to \sigma^{Pi}$ , where

$$\sigma^{Pi}(E) = \int \sigma(E') \ \mathcal{F}(E' - E; \Omega) \ dE'. \tag{5}$$

The slit function  $\mathcal{F}$  may be approximated at the center by a Gaussian distribution  $\mathcal{G}$  and modified at its tail by a Lorentzian distribution  $\mathcal{L}$ . It can be expressed by a weighted combination of  $\mathcal{G}$  and  $\mathcal{L}_{s}^{1,3}$  i.e.,

$$\mathcal{F}(E;\Omega,w_q,w_\ell) = w_g \,\mathcal{G}(E;\Omega) + w_\ell \,\mathcal{L}(E;\Omega) \,, \tag{6}$$

where the sum of  $w_g$  and  $w_\ell$  equals one. ( $\mathcal{G}$  and  $\mathcal{L}$  are given explicitly by Eq. (4) of Ref. 1.) There is no well established general procedure to determine the weighting factors  $w_g$  and  $w_\ell$  experimentally in the absence of ultrahigh energy resolution. Based on the analytical relations discussed in the next section, we shall propose a procedure leading to the determination of  $w_g$  and  $w_\ell$ .

The density effect in photoabsorption can be easily illus-

348

trated by the variation of the convoluted spectra of an isolated resonance with changing nl and  $\Omega$ . For simplicity, we will limit our discussion using a Fano-type of resonance described by an asymmetry parameter q and the smoothly varying background cross section  $\sigma_b$ , i.e.,<sup>4</sup>

$$\sigma(E) = \sigma_b \frac{(q+\epsilon)^2}{1+\epsilon^2} \,, \tag{7}$$

where the reduced energy  $\epsilon = (E-E_r)/(\frac{1}{2}\Gamma)$  is defined in terms of the energy  $E_r$  and the width  $\Gamma$  of the resonance. The cross section  $\sigma$  is expected to reach its peak value  $\sigma_{max} = \sigma_b(1+q^2)$  and a zero at energies

$$E_{max} = E_r + \frac{1}{2}(\Gamma/q)$$
 and  $E_{min} = E_r - \frac{1}{2}(\Gamma q)$ , (8)

respectively. Fig. 1 presents a number of selected convoluted photoionization spectra using Eq. (5) with R ranging from 1/10 to 1/25 and a slit function  $\mathcal F$  represented either by a Gaussian distribution  $\mathcal G$  or a Lorentzian distribution  $\mathcal L$ . These spectra correspond to a fictitious resonance derived from Eq. (7) with  $E_r=2.110$  Ry,  $\sigma_b=1.0$  Mb,  $q^2=2500$ , and  $\Gamma=10^{-6}$  Ry. As expected, for a given ratio R, the peak cross section  $\sigma_{max}$  corresponding to the spectrum convoluted



Fig. 1. Convoluted *photoionization* spectra using Eq. (5) with R ranging from 1/10 to 1/25.



Fig. 2. Convoluted *photoabsorption* spectra using Eq. (4) with R ranging from 1/10 to 1/25 and a column density  $nl = 0.001 \text{ Mb}^{-1}$ .

using Gaussian distribution is substantially higher than the one using Lorentzian distribution. The density effect in *photoabsorption* measurement is unambiguous demonstrated by the substantial reduction in peak cross sections shown in Fig. 2 when the same spectrum is convoluted using Eq. (4) with a column density  $nl = 0.001 \ Mb^{-1}$ .

## II. PEAK CROSS SECTIONS

For an ultra-narrow and nearly symmetric resonance, the peak cross section  $\sigma_{max}$  is very well approximated by the cross section at  $E=E_r$ , i.e.,  $\sigma_{max}\approx\sigma(E_r)$ , since, from Eq. (8), the energy corresponding to the peak cross section, i.e.,  $E_{max}$ , equals approximately the resonant energy  $E_r$  as the difference  $E_{max}-E_r$  is substantially smaller than the resonance width, i.e., as  $q^2\gg 1$  and  $\frac{\Gamma}{q}\ll\Gamma$ .

In a photoionization experiment,

$$\sigma_{max}^{Pi} \cong \int \sigma(E') \ \mathcal{F}(E' - E_r; \Omega) \ dE'.$$
 (9)

Although Eq. (5) is not in general integrable for an arbi-

trary energy E, Eq. (9) can be integrated analytically. For a Lorentzian distribution,

$$\sigma_{max}^{L} = \sigma_b \ (1 + q^2 R) / (1 + R) \tag{10}$$

and for a Gaussian distribution.

$$\sigma_{max}^{G} = \sigma_b (1 + \pi^{1/2}(q^2 - 1))Re^{R^2} F_c(R), \tag{11}$$

where  $F_c(x)=1-(2/\sqrt{\pi})\int_0^x e^{-y^2}dy$  is the complementary error function. For a nearly symmetric ultra-narrow resonance, such as the fictitious resonance shown in Figs. 1 and 2, our calculation shows that the approximate  $\sigma_{max}$  at  $E=E_r$ , derived from Eqs. (10) and (11), are within 0.05% of the exact peak cross sections determined from the numerically calculated spectra using Eq. (5). In a photoabsorption experiment, the peak cross section  $\sigma_{max}$  can also be approximated simi-



Fig. 3. Comparison between  $\sigma_{max}$  (nearly straight lines) obtained from Eq. (12) and the exact peak cross sections at  $R=\frac{1}{25},\frac{1}{20},\frac{1}{15}$  and  $\frac{1}{10}$  for a number of column densities nl derived directly from the numerically calculated convoluted spectra using Eqs. (4) and (5) for photoabsorption and photoionization (i.e., when nl=0), respectively.

larly from Eq. (4) as

$$\sigma_{max}^{pa} \cong -\frac{1}{nl} \ln(\int \mathcal{F}(E' - E_r; \Omega) e^{-nl\sigma(E')} dE').$$
 (12)

Fig. 3 shows that the approximate peak cross sections  $\sigma_{max}$ , represented by the nearly straight lines obtained from Eq. (12) are in close agreement with the exact peak cross sections at  $R=\frac{1}{25},\frac{1}{20},\frac{1}{15}$  and  $\frac{1}{10}$  for a number of column densities nl derived directly from the numerically calculated convoluted spectra using Eqs. (4) and (5) for photoabsorption and photoionization (i.e., when nl=0), respectively.

In general, Eq. (12) can not be integrated analytically due to the exponential term  $e^{-nl\sigma}$ . However, when  $e^{-nl\sigma}$  is expanded into an infinite series, each individual term becomes integrable and  $\sigma_{max}$  can be expressed in terms of a polynomial in R, i.e.,

$$\sigma_{max} \to \sigma^{Pa}(E = E_r) = q^2 \sigma_b \ X(R, nl),$$
 (13)

where

$$X(R, nl) = \sum_{i=1}^{n} (-1)^{i+1} \xi_i(\rho) R^i$$
 (14)

and  $\rho$  is a parameter given by

$$\rho = nlq^2 \sigma_b. \tag{15}$$

For a Lorentzian distribution, the first few expansion coefficients are

$$\xi_1 = 1 - \frac{1}{4}\rho + \frac{1}{16}\rho^2 - \frac{5}{384}\rho^3 + \frac{7}{3072}\rho^4 - \cdots$$
 (16)

$$\xi_2 = 1 - \frac{1}{2}\rho + \frac{1}{4}\rho^2 - \frac{3}{32}\rho^3 + \frac{11}{384}\rho^4 - \cdots$$
 (17)

$$\xi_3 = 1 - \frac{3}{4}\rho + \frac{9}{16}\rho^2 - \frac{119}{384}\rho^3 + \frac{141}{1024}\rho^4 - \cdots$$
 (18)

$$\xi_4 = 1 - \rho + \rho^2 - \frac{35}{48}\rho^3 + \frac{41}{96}\rho^4 - \cdots$$
 (19)

$$\xi_5 = 1 - \frac{5}{4}\rho + \frac{25}{16}\rho^2 - \frac{545}{384}\rho^3 + \frac{3175}{3072}\rho^4 - \cdots,$$
 (20)

and for a Gaussian distribution

$$\xi_1 = \sqrt{\pi} \left(1 - \frac{1}{4}\rho + \frac{1}{16}\rho^2 - \frac{5}{384}\rho^3 + \frac{7}{3072}\rho^4 - \cdots\right)$$
 (21)

$$\xi_2 = 2 - \pi (\frac{1}{2}\rho - \frac{1}{4}\rho^2 + \frac{3}{32}\rho^3 - \frac{11}{384}\rho^4 + \cdots)$$
 (22)

350

$$\xi_4 = \frac{4}{3}(1-\rho) - \pi(\rho - 2\rho^2 + (\frac{47}{48} + \frac{\pi}{4})\rho^3 - (\frac{35}{96} + \frac{\pi}{4})\rho^4 + \cdots)$$
(24)

$$\xi_5 = \sqrt{\pi} \left( \frac{1}{2} - \frac{71}{24} \rho + \left( \frac{307}{96} + \pi \right) \rho^2 - \left( \frac{673}{768} + \frac{9\pi}{4} \right) \rho^3 + \left( \frac{20329}{92160} + \frac{37\pi}{24} + \frac{\pi^2}{5} \right) \rho^4 - \cdots \right).$$
(25)

Under a typical experimental condition, even at a fairly low column density nl, the parameter  $\rho$  may be close to or greater than unity as  $q^2 \gg 1$ . Consequently, the peak cross section  $\sigma_{max}$  can be estimated approximately from Eq. (13) only if R is very small and the number of contributing  $\xi_i$  terms is limited. More discussion will be given in section III.

### III. PROPOSED PROCEDURES

# A. Determination of $w_\ell$ and $w_g$ in Photoionization

When  $\Gamma \ll \Omega$  (or,  $R \ll 1$ ), for a nearly symmetric resonance with  $q^2 \gg 1$ , the observed  $\sigma_{max} = w_\ell \sigma_{max}^L + w_g \sigma_{max}^G$  can be expressed approximately according to Eqs. (10) and (11) as

$$\sigma_{max} \to (w_{\ell} + w_g \pi^{1/2})(q^2 \sigma_b) R, \tag{26}$$

or,  $\sigma_{max}$  varies linearly as functions of  $1/\Omega$ . As a result,

$$(w_{\ell} + w_g \pi^{1/2})(q^2 \Gamma \sigma_b) = S_1, \tag{27}$$

where  $S_1$  is the slope determined experimentally by a plot of  $\sigma_{max}$  vs.  $1/\Omega$  according to Eq. (12). In addition, according to Eq. (17) of Ref. 1,

$$(1.3282w_{\ell} + 1.9646w_{a})(q^{2}\Gamma\sigma_{b}) = S_{2}, \tag{28}$$

where  $S_2$  is also a slope determined experimentally by a procedure detailed in Ref. 1. Eqs. (27) and (28), together with  $w_\ell + w_g = 1$ , offer an unambiguous procedure to determine the weighting factors  $w_\ell$  and  $w_g$  in a photoionization experiment.



Fig. 4. Comparison of the approximate peak cross sections,  $\sigma_{E=E_r}$ , obtained from the analytical expression Eq. (13), the numerically calculated  $\sigma_{E=E_r}$  from Eq. (12) and the exact  $\sigma_{max}$  from Eq. (4).

# **B.** Determination of $q^2\sigma_b$ and $\Gamma$

Fig. 4 shows that the approximate peak cross sections,  $\sigma_{E=E_r}$ , obtained from the *analytical* expression Eq. (13) remain in close agreement with the *numerically* calculated  $\sigma_{E=E_r}$  from Eq. (12) and the exact  $\sigma_{max}$  from Eq. (4) for a value of  $\rho = nlq^2\sigma_b$  as large as 1.25. Clearly, as  $\rho$  increases to a value of 2.5, Eq. (13) is no longer applicable.

Since  $\Omega$  (not R) is an experimentally measured variable, we shall now work with an alternative polynomial, in stead of the polynomial X(R, nl), for  $\sigma_{max}$ , i.e.,

$$\sigma_{max} = (q^2 \sigma_b \Gamma) Y(\eta, nl), \tag{29}$$

where  $Y(\eta, nl)$  takes the form

$$Y(\eta, nl) = \sum_{i=1} (-\Gamma)^{i-1} \xi_i(\rho) \eta^i$$
 (30)

and

$$\eta = 1/\Omega. \tag{31}$$

Our proposed procedure starts with a best fit of the measured  $\sigma_{max}$  at a number of energy resolutions to an expression

$$\sigma_{max}(\eta; nl) = \sum_{\mu=1} \alpha_{\mu}(nl) \, \eta^{\mu}. \tag{32}$$

By comparing Eq. (32) to Eq. (29), the fitted coefficients  $\alpha_{\mu}$  for a given nl is independent of  $\Omega$ . In addition, the ratio

of two fitted values of  $\alpha_{\mu}$  at two different column densities equals to the ratio of two  $\xi_{\mu}$ , i.e.,

$$\frac{\alpha_{\mu}(nl)}{\alpha_{\mu}(n'l')} = \frac{\xi_{\mu}(\rho)}{\xi_{\mu}(\rho')}.$$
(33)

Since  $\sigma_{max}$  is a slowly varying function of  $\eta$ , a number of experimentally determined ratios between several pairs of  $\alpha_1$  obtained at different column densities should be sufficient to fit adequately a value of  $q^2\sigma_b$ . With a best fitted  $q^2\sigma_b$ , the resonant width  $\Gamma$  can be determined readily from Eq. (13) or (29).

### IV. RESULTS AND DISCUSSION

Fig. 5 presents the variation of the *simulated* photoabsorption peak cross sections  $\sigma_{max}$  as a function of  $1/\Omega$  at several column densities. It is derived from the convoluted spectra numerically calculated from Eq. (4) for a fictitious resonance with a width  $\Gamma = 5 \times 10^{-5}$  Ry,  $q^2 = 400$ , and  $\sigma_b = 0.015~Mb$ . Following the procedure outlined in section III.B, for each nl, a parameter  $\alpha_1$  is first least-square fitted from Eq. (29). Second, from Eq. (30), we obtain a best fitted



Fig. 5. Variation of *simulated* photoabsorption peak cross sections  $\sigma_{max}$  (from Eq. (4)) as a function of  $1/\Omega$  at column densities ranging from  $0.07~Mb^{-1}$  to  $0.23~Mb^{-1}$ . (Only Lorentzian data are shown.)

value of 5.42 Mb and 5.54 Mb for  $q^2\sigma_b$  using the Lorentzian and Gaussian distribution, respectively. Finally, Eq. (13) leads to a width of  $5.67\times 10^{-5}$  Ry (Lorentzian) and  $5.48\times 10^{-5}$  Ry (Gaussian). The 10% error introduced in this application is not unexpected due to values of  $\rho$  which exceed unity for some of the column densities.

The deconvolution procedure proposed in this paper works best when  $q^2\gg 1$ . It clearly posts a difficult experimental challenge as it also requires simultaneously a small parameter  $\rho=nlq^2\sigma_b$  when a small column density nl may adversely reduce the signal to noise ratio in a photoabsorption experiment. In spite of this difficulty, the procedure proposed above offers a realistic possibility to take advantage of the density effect, in an attempt to determine experimentally the width of an ultra-narrow and nearly symmetric atomic resonance which can not be measured directly otherwise.

### **ACKNOWLEDGMENTS**

This work is partially supported by the National Science Council of Taiwan under contract NSC 88-2112-M008-011 (TSY) and by NSF Grant No. PHY9802557 (TNC).

Received April 30, 2001.

## **Key Words**

Atomic photoabsorption spectra; Deconvolution.

## REFERENCES

- 1. Fang, T. K.; Chang, T. N. Phys. Rev. 1998, A57, 4407.
- Hudson, R. D.; Carter, V. L. J. Op. Soc. Am. 1968, 58
   Chan, W. F.; Cooper, G.; Brion, C. E. Phys. Rev. 1991, A44, 186.
- Schulz, K.; Kaindl, G.; Domke, M.; Bozek, J. D.; Heimann, P. A.; Schlachter, A. S.; Rost, J. M. *Phys. Rev. Lett.* 1996, 77, 3086.
- 4. Fano, U. Phys. Rev. 1961, 124, 1866.